Membrane desolvation for the analysis of organic solutions and liquid chromatographic samples with low power helium microwave induced plasma atomic emission detection

[1]  J. Carnahan,et al.  Effects of a Membrane Desolvator on the Analytical Performance of a 120 W Helium Microwave-Induced Plasma: Aqueous Desolvation , 1998 .

[2]  J. Carnahan,et al.  Investigation of a flat sheet membrane desolvator for aqueous solvent removal with inductively coupled plasma atomic emission spectrometry. , 1997, Talanta.

[3]  S. Westerlund,et al.  Analysis of Metals in Condensates and Naphtha by Inductively Coupled Plasma Mass Spectrometry , 1997 .

[4]  J. Koropchak,et al.  Use of a multi-tube Nafion® membrane dryer for desolvation with thermospray sample introduction to inductively coupled plasma-atomic emission spectrometry , 1996 .

[5]  I. Brenner,et al.  Evaluation of an ultrasonic nebulizer-membrane separation interface (USN-MEMSEP) with ICP-AES for the determination of trace elements by solvent extraction , 1996 .

[6]  R. Botto,et al.  Universal calibration for analysis of organic solutions by inductively coupled plasma atomic emission spectrometry , 1996 .

[7]  L. B. Allen,et al.  Communication. Aerosol-phase assisted sample digestion for the determination of trace metals in organic samples by plasma atomic emission spectrometry , 1996 .

[8]  Removal of organic solvents by cryogenic desolvation in inductively coupled plasma mass spectrometry : invited lecture , 1994 .

[9]  Wenjun Yang,et al.  Study of analytical performance of a low-powered microwave plasma torch in atomic emission spectrometry , 1994 .

[10]  R. Winans,et al.  Helium microwave induced plasma atomic emission detection for liquid chromatography utilizing a moving band interface , 1993 .

[11]  R. Houk,et al.  Reduction of polyatomic ion interferences in inductively coupled plasma mass spectrometry by cryogenic desolvation , 1992 .

[12]  S. Hill,et al.  Determination of trace metals in volatile organic solvents using inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry , 1992 .

[13]  N. Jakubowski,et al.  Hydraulic high pressure nebulization-application of a new nebulization system for inductively coupled plasma mass spectrometry , 1992 .

[14]  R. Browner,et al.  Comparison of desolvation effects with aqueous and organic (carbon tetrachloride) sample introduction for inductively coupled plasma atomic emission spectrometry , 1990 .

[15]  J. McLaren,et al.  Use of aerosol processing and nitrogen-argon plasmas for reduction of oxide interference in inductively coupled plasma mass spectrometry , 1990 .

[16]  M. Kubota,et al.  Studies with desolvation in inductively coupled plasma-mass spectrometry , 1990 .

[17]  R. Winans,et al.  Moving wheel liquid chromatography-helium microwave-induced plasma interface , 1989 .

[18]  F. Maessen,et al.  Effects of the solvent plasma load of various solvents on the excitation conditions in medium power inductively coupled plasmas , 1989 .

[19]  J. Wagner,et al.  Empirical model for estimating drop size distributions of aerosols generated by inductively coupled plasma nebulizers , 1988 .

[20]  A. Gustavsson Characterization of a membrane interface for sample introduction into atom reservoirs for analytical atomic spectrometry , 1988 .

[21]  R. Browner,et al.  Study of the influence of water vapour loading and interface pressure in inductively coupled plasma mass spectrometry , 1988 .

[22]  P. Udén Element-selective chromatographic detection by plasma atomic emission spectroscopy , 1987 .

[23]  M. Veber,et al.  Thermospray sample introduction to atomic spectrometry , 1987 .

[24]  R. Hutton,et al.  Role of aerosol water vapour loading in inductively coupled plasma mass spectrometry , 1987 .

[25]  A. Gustavsson Characterization of an interface for sample introduction into an inductively coupled plasma , 1987 .

[26]  J. Caruso,et al.  Evaluation of the grid-type nebuliser for organic solvent introduction into the inductively coupled plasma , 1987 .

[27]  S. Hill,et al.  Directly coupled chromatography-atomic spectroscopy. Part 1. Directly coupled gas chromatography-atomic spectroscopy. A review , 1986 .

[28]  F. Maessen,et al.  Experimental control of the solvent load of inductively coupled argon plasmas and effects of the chloroform plasma load on their analytical performance , 1986 .

[29]  M. Blades,et al.  Excitation temperature and electron density in the inductively coupled plasma—aqueous vs organic solvent introduction , 1985 .

[30]  J. Caruso,et al.  Characterization of a moderate-power microwave-induced plasma for direct solution nebulization of metal ions , 1984 .

[31]  P. Barrett,et al.  Use of organic solvents for inductively coupled plasma analyses , 1984 .

[32]  F. Maessen,et al.  Analytical aspects of organic solvent load reduction in normal-power ICPs by aerosol thermostatting at low temperatures , 1984 .

[33]  H. Kawaguchi,et al.  Effects of organic acids and solvents in inductively-coupled plasma emission spectrometry , 1983 .

[34]  R. Browner,et al.  Effects of organic solvents in inductively coupled plasma atomic emission spectrometry , 1982 .

[35]  L. T. Taylor,et al.  Size exclusion chromatography of organically bound metals and coal-derived materials with inductively coupled plasma atomic emission spectrometric detection , 1981 .

[36]  L. T. Taylor,et al.  Nonaqueous on-line simultaneous determination of metals by size exclusion chromatography with inductively coupled plasma atomic emission spectrometric detection , 1981 .

[37]  Alan L. Gray,et al.  Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements , 1980 .

[38]  V. Fassel Quantitative Elemental Analyses by Plasma Emission Spectroscopy , 1978, Science.