Allele-specific expression and high-throughput reporter assay reveal functional genetic variants associated with alcohol use disorders

[1]  J. McClintick,et al.  Alcohol Dehydrogenases, Aldehyde Dehydrogenases, and Alcohol Use Disorders: A Critical Review , 2018, Alcoholism, clinical and experimental research.

[2]  David Haussler,et al.  The UCSC Genome Browser database: 2019 update , 2018, Nucleic Acids Res..

[3]  S. McWeeney,et al.  Regional Differences and Similarities in the Brain Transcriptome for Mice Selected for Ethanol Preference From HS-CC Founders , 2018, Front. Genet..

[4]  H. Kranzler,et al.  Diagnosis and Pharmacotherapy of Alcohol Use Disorder: A Review , 2018, JAMA.

[5]  Yunlong Liu,et al.  PASSPORT-seq: A Novel High-Throughput Bioassay to Functionally Test Polymorphisms in Micro-RNA Target Sites , 2018, Front. Genet..

[6]  Sarah M. Hartz,et al.  Trans-ancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders , 2018, Nature Neuroscience.

[7]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[8]  R. Mayfield,et al.  Gene expression profiling in the human alcoholic brain , 2017, Neuropharmacology.

[9]  C. Harrington,et al.  Effects of selection for ethanol preference on gene expression in the nucleus accumbens of HS‐CC mice , 2017, Genes, brain, and behavior.

[10]  Helen E. Parkinson,et al.  The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog) , 2016, Nucleic Acids Res..

[11]  K. Grant,et al.  Opposing effects of alcohol on the immune system , 2016, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[12]  D. Herr,et al.  Role of sphingomyelinases in neurological disorders , 2015, Expert opinion on therapeutic targets.

[13]  H. Kranzler,et al.  Alcohol Dependence Genetics: Lessons Learned From Genome-Wide Association Studies (GWAS) and Post-GWAS Analyses. , 2015, Alcoholism, clinical and experimental research.

[14]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[15]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[16]  S. Neupane,et al.  High Frequency and Intensity of Drinking may Attenuate Increased Inflammatory Cytokine Levels of Major Depression in Alcohol‐use Disorders , 2014, CNS neuroscience & therapeutics.

[17]  Yan Cui,et al.  PolymiRTS Database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways , 2013, Nucleic Acids Res..

[18]  Tatiana Foroud,et al.  Genetics and alcoholism , 2013, Nature Reviews Gastroenterology &Hepatology.

[19]  Janet B W Williams,et al.  Diagnostic and Statistical Manual of Mental Disorders , 2013 .

[20]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[21]  B. Graveley,et al.  Effects of cocaine and withdrawal on the mouse nucleus accumbens transcriptome , 2013, Genes, brain, and behavior.

[22]  G. Siggins,et al.  The central amygdala and alcohol: role of γ-aminobutyric acid, glutamate, and neuropeptides. , 2012, Cold Spring Harbor perspectives in medicine.

[23]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[24]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[25]  Y. Hannun,et al.  Mammalian Neutral Sphingomyelinases: Regulation and Roles in Cell Signaling Responses , 2010, NeuroMolecular Medicine.

[26]  C. Gong,et al.  Deregulation of sphingolipid metabolism in Alzheimer's disease , 2010, Neurobiology of Aging.

[27]  M. R. Diaz,et al.  Chronic ethanol and withdrawal effects on kainate receptor-mediated excitatory neurotransmission in the rat basolateral amygdala. , 2009, Alcohol.

[28]  M. Schuckit,et al.  Genetic factors influencing alcohol dependence , 2008, British journal of pharmacology.

[29]  P. Donnelly,et al.  A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.

[30]  K. Pahan,et al.  Fibrillar Amyloid-β Peptides Kill Human Primary Neurons via NADPH Oxidase-mediated Activation of Neutral Sphingomyelinase , 2004, Journal of Biological Chemistry.

[31]  M. Katoh,et al.  Identification and characterization of human TMEM25 and mouse Tmem25 genes in silico. , 2004, Oncology reports.

[32]  J. Renau‐Piqueras,et al.  Ceramide pathways modulate ethanol‐induced cell death in astrocytes , 2003, Journal of neurochemistry.

[33]  A. Dagher,et al.  Alcohol promotes dopamine release in the human nucleus accumbens , 2003, Synapse.

[34]  A. Nilsson,et al.  Activation of neutral sphingomyelinase participates in ethanol-induced apoptosis in Hep G2 cells. , 2000, Alcohol and alcoholism.

[35]  J. Kril,et al.  The cerebral cortex is damaged in chronic alcoholics , 1997, Neuroscience.

[36]  J. Rabe-Jabłońska,et al.  [Affective disorders in the fourth edition of the classification of mental disorders prepared by the American Psychiatric Association -- diagnostic and statistical manual of mental disorders]. , 1993, Psychiatria polska.

[37]  J. Kornhuber,et al.  Sphingolipids in psychiatric disorders and pain syndromes. , 2013, Handbook of experimental pharmacology.

[38]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[39]  O. Delaneau,et al.  Supplementary Information for ‘ Improved whole chromosome phasing for disease and population genetic studies ’ , 2012 .

[40]  S. Tenenbaum,et al.  Advances in RIP-chip analysis : RNA-binding protein immunoprecipitation-microarray profiling. , 2008, Methods in molecular biology.

[41]  E. Stoeckli Ig superfamily cell adhesion molecules in the brain. , 2004, Handbook of experimental pharmacology.

[42]  K. Pahan,et al.  Fibrillar amyloid-beta peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase. Implications for Alzheimer's disease. , 2004, The Journal of biological chemistry.

[43]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .