Periodic travelling waves in cyclic populations: field studies and reaction–diffusion models

Periodic travelling waves have been reported in a number of recent spatio-temporal field studies of populations undergoing multi-year cycles. Mathematical modelling has a major role to play in understanding these results and informing future empirical studies. We review the relevant field data and summarize the statistical methods used to detect periodic waves. We then discuss the mathematical theory of periodic travelling waves in oscillatory reaction–diffusion equations. We describe the notion of a wave family, and various ecologically relevant scenarios in which periodic travelling waves occur. We also discuss wave stability, including recent computational developments. Although we focus on oscillatory reaction–diffusion equations, a brief discussion of other types of model in which periodic travelling waves have been demonstrated is also included. We end by proposing 10 research challenges in this area, five mathematical and five empirical.

[1]  W. Koenig Global patterns of environmental synchrony and the Moran effect , 2002 .

[2]  Jason Matthiopoulos,et al.  Territorial behaviour and population dynamics in red grouse Lagopus lagopus scoticus . II . Population models , 2003 .

[3]  Mercedes Pascual,et al.  Diffusion-induced chaos in a spatial predator–prey system , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[4]  R. Ostfeld The fence effect reconsidered , 1994 .

[5]  V. Selås Explaining bank vole cycles in southern Norway 1980–2004 from bilberry reports 1932–1977 and climate , 2006, Oecologia.

[6]  James P. Keener,et al.  Mathematical physiology , 1998 .

[7]  J A Sherratt,et al.  Generation of periodic waves by landscape features in cyclic predator–prey systems , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[8]  P. Hagan,et al.  Target patterns in reaction-diffusion systems , 1981 .

[9]  Daihai He,et al.  Chaotic oscillations and cycles in multi-trophic ecological systems. , 2007, Journal of theoretical biology.

[10]  N. Britton Aggregation and the competitive exclusion principle. , 1989, Journal of Theoretical Biology.

[11]  Sergei Petrovskii,et al.  Spatiotemporal complexity of patchy invasion in a predator-prey system with the Allee effect. , 2006, Journal of theoretical biology.

[12]  W. Fagan,et al.  Competitive reversals inside ecological reserves: the role of external habitat degradation , 1998, Journal of mathematical biology.

[13]  Nicola J Armstrong,et al.  The effects of obstacle size on periodic travelling waves in oscillatory reaction–diffusion equations , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  J. Sherratt,et al.  Oscillatory reaction-diffusion equations with temporally varying parameters , 2004 .

[15]  Bai-lian Li,et al.  Bifurcations and chaos in a predator-prey system with the Allee effect , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[16]  Ludek Berec,et al.  Multiple Allee effects and population management. , 2007, Trends in ecology & evolution.

[17]  Marcus R. Garvie Finite-Difference Schemes for Reaction–Diffusion Equations Modeling Predator–Prey Interactions in MATLAB , 2007, Bulletin of mathematical biology.

[18]  B. Hassard,et al.  Theory and applications of Hopf bifurcation , 1981 .

[19]  William Gurney,et al.  Circles and spirals: population persistence in a spatially explicit predator-prey model , 1998 .

[20]  J. Sherratt Unstable wavetrains and chaotic wakes in reaction-diffusion systems of l-Ω type , 1995 .

[21]  S. Piertney,et al.  Local genetic structure in red grouse (Lagopus lagopus scoticus): evidence from microsatellite DNA markers , 1998, Molecular ecology.

[22]  M. Kot,et al.  Discrete-time growth-dispersal models , 1986 .

[23]  I. Graham,et al.  Testing the specialist predator hypothesis for vole cycles , 2003 .

[24]  N. Stenseth,et al.  A gradient from stable to cyclic populations of Clethrionomys rufocanus in Hokkaido, Japan , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  Arnd Scheel,et al.  Instabilities of Wave Trains and Turing Patterns in Large Domains , 2007, Int. J. Bifurc. Chaos.

[26]  J. Greenwood,et al.  Ecological Census Techniques: General census methods , 2006 .

[27]  O. Hogstad,et al.  Waves and synchrony in Epirrita autumnata/Operophtera brumata outbreaks. I. Lagged synchrony: regionally, locally and among species. , 2007, The Journal of animal ecology.

[28]  Alan R. Champneys,et al.  Numerical Computation of Coherent Structures , 2007 .

[29]  E. Risler Generic Instability of Spatial Unfoldings¶of Almost Homoclinic Periodic Orbits , 2001 .

[30]  Peter J. Hudson,et al.  The shape of red grouse cycles , 2004 .

[31]  Nicholas F. Britton,et al.  Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model , 1990 .

[32]  M. Oli Population cycles of small rodents are caused by specialist predators: or are they? , 2003 .

[33]  D. Elston,et al.  Changes over Time in the Spatiotemporal Dynamics of Cyclic Populations of Field Voles (Microtus agrestis L.) , 2006, The American Naturalist.

[34]  R. Macarthur,et al.  Graphical Representation and Stability Conditions of Predator-Prey Interactions , 1963, The American Naturalist.

[35]  T. Royama,et al.  MORAN EFFECT ON NONLINEAR POPULATION PROCESSES , 2005 .

[36]  B. Sandstede,et al.  Chapter 18 - Stability of Travelling Waves , 2002 .

[37]  Vincent Bretagnolle,et al.  Vole population cycles in northern and southern Europe: is there a need for different explanations for single pattern? , 2006, The Journal of animal ecology.

[38]  Arnd Scheel,et al.  Radially Symmetric Patterns of Reaction-Diffusion Systems , 2003 .

[39]  T. Klemola,et al.  Small Mustelid Predation Slows Population Growth of Microtus Voles: A Predator Reduction Experiment , 1997 .

[40]  Jonathan A. Sherratt,et al.  Periodic Travelling Wave Selection by Dirichlet Boundary Conditions in Oscillatory Reaction-Diffusion Systems , 2003, SIAM J. Appl. Math..

[41]  C. Cáceres,et al.  Food‐web responses to species invasion by a predatory invertebrate: Bythotrephes in Lake Michigan , 1993 .

[42]  N. Stenseth,et al.  The effect of climatic forcing on population synchrony and genetic structuring of the Canadian lynx. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[43]  G. Bard Ermentrout,et al.  Stable small-amplitude solutions in reaction-diffusion systems , 1981 .

[44]  M P,et al.  Environmental Heterogeneity and Biological Pattern in a Chaotic Predator – prey System , 1997 .

[45]  P. A. P. Moran,et al.  The statistical analysis of the Canadian Lynx cycle. , 1953 .

[46]  Taylor,et al.  Dynamical role of predators in population cycles of a forest insect: An experimental test , 1999, Science.

[47]  On the abundance of traveling waves in 1D infinite cellular automata , 1997 .

[48]  D. Elston,et al.  Testing the role of parasites in driving the cyclic population dynamics of a gamebird. , 2006, Ecology letters.

[49]  Stephen A. Gourley,et al.  Instability of travelling wave solutions of a population model with nonlocal effects , 1993 .

[50]  H. Tong,et al.  Common dynamic structure of canada lynx populations within three climatic regions , 1999, Science.

[51]  John Brindley,et al.  Ocean plankton populations as excitable media , 1994 .

[52]  J. Greenberg Spiral waves for ?-? systems, II , 1981 .

[53]  Jonathan A. Sherratt,et al.  Invading wave fronts and their oscillatory wakes are linked by a modulated travelling phase resetting wave , 1998 .

[54]  Andrew M. Liebhold,et al.  Are bark beetle outbreaks less synchronous than forest Lepidoptera outbreaks? , 2005, Oecologia.

[55]  Andrew M. Liebhold,et al.  Spatial Synchrony in Population Dynamics , 2004 .

[56]  N. Stenseth,et al.  Spatio–temporal dynamics of the grey–sided vole in Hokkaido: identifying coupling using state-based Markov–chain modelling , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[57]  A. Dobson,et al.  Prevention of population cycles by parasite removal. , 1998, Science.

[58]  J. Sherratt Oscillatory and chaotic wakes behind moving boundaries in reaction–diffusion systems , 1996 .

[59]  Xavier Lambin,et al.  The impact of weasel predation on cyclic field-vole survival: the specialist predator hypothesis contradicted , 2002 .

[60]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[61]  Peter J. Hudson,et al.  Parasites and climate synchronize red grouse populations , 2005, Nature.

[62]  Nancy Kopell,et al.  Target Patterns and Horseshoes from a Perturbed Central-Force Problem: Some Temporally Periodic Solutions to Reaction-Diffusion Equations , 1981 .

[63]  On the nonlinear stability of plane waves for the ginzburg‐landau equation , 1994 .

[64]  Alison L. Kay,et al.  Spatial Noise Stabilizes Periodic Wave Patterns in Oscillatory Systems on Finite Domains , 2000, SIAM J. Appl. Math..

[65]  Robert M. May,et al.  Theoretical Ecology: Principles and Applications , 1977 .

[66]  Sergei Petrovskii,et al.  Critical phenomena in plankton communities: KISS model revisited , 2000 .

[67]  E. J. Doedel,et al.  AUTO: a program for the automatic bifurcation analysis of autonomous systems , 1980 .

[68]  Mark Frederick Hoemmen,et al.  An Overview of Trilinos , 2003 .

[69]  F. Hilker,et al.  Patterns of Patchy Spread in Deterministic and Stochastic Models of Biological Invasion and Biological Control , 2005, Biological Invasions.

[70]  J. Smoller,et al.  The Existence of Periodic Travelling Waves for Singularly Perturbed Predator-Prey Equations via the Conley Index , 1983 .

[71]  Marte O. Kittilsen,et al.  Interaction between seasonal density-dependence structures and length of the seasons explain the geographical structure of the dynamics of voles in Hokkaido: an example of seasonal forcing , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[72]  P. Hudson,et al.  Experimentally increased aggressiveness reduces population kin structure and subsequent recruitment in red grouse Lagopus lagopus scoticus , 2005 .

[73]  J A Sherratt,et al.  The Effects of the Size and Shape of Landscape Features on the Formation of Traveling Waves in Cyclic Populations , 2003, The American Naturalist.

[74]  Andrew M. Liebhold,et al.  Landscape geometry and travelling waves in the larch budmoth , 2004 .

[75]  N. Stenseth,et al.  Ecological and genetic spatial structuring in the Canadian lynx , 2003, Nature.

[76]  X. Lambin,et al.  Cyclic dynamics in field vole populations and generalist predation , 2000 .

[77]  P. Hudson,et al.  Territorial behaviour and population dynamics in red grouse Lagopus lagopus scoticus. I. Population experiments , 2003, Journal of Animal Ecology.

[78]  Florian Jeltsch,et al.  Oscillating dispersal patterns of tephritid fly populations , 1992 .

[79]  Hans F. Weinberger,et al.  Spatial patterning of the spruce budworm , 1979 .

[80]  D. Moorhead,et al.  DNA reveals high dispersal synchronizing the population dynamics of Canada lynx , 2022 .

[81]  Jonathan A. Sherratt On the Evolution of Periodic Plane Waves in Reaction-Diffusion Systems of Lambda-Omega Type , 1994, SIAM J. Appl. Math..

[82]  C. Krebs Population Cycles Revisited , 1996 .

[83]  M. Gameiro,et al.  Topological Horseshoes of Traveling Waves for a Fast–Slow Predator–Prey System , 2007 .

[84]  Jason Matthiopoulos,et al.  SOCIALLY INDUCED RED GROUSE POPULATION CYCLES NEED ABRUPT TRANSITIONS BETWEEN TOLERANCE AND AGGRESSION , 2005 .

[85]  E. Ranta,et al.  Dynamics of Canadian lynx populations in space and time , 1997 .

[86]  Veijo Kaitala,et al.  Travelling waves in vole population dynamics , 1997, Nature.

[87]  Jonathan A. Sherratt,et al.  Periodic travelling waves in cyclic predator–prey systems , 2001 .

[88]  David A. Elston,et al.  SPATIAL ASYNCHRONY AND DEMOGRAPHIC TRAVELING WAVES DURING RED GROUSE POPULATION CYCLES , 2000 .

[89]  Koenig,et al.  Spatial autocorrelation of ecological phenomena. , 1999, Trends in ecology & evolution.

[90]  J. M. Fraile,et al.  General conditions for the existence of a Critical point-periodic wave front connection for reaction-diffusion systems , 1989 .

[91]  Rolf A. Ims,et al.  Spatial synchronization of vole population dynamics by predatory birds , 2000, Nature.

[92]  P. Driessche,et al.  Dispersal data and the spread of invading organisms. , 1996 .

[93]  Jianhua Huang,et al.  Existence of traveling wave solutions in a diffusive predator-prey model , 2003, Journal of mathematical biology.

[94]  Stephen A. Gourley,et al.  Travelling fronts for the KPP equation with spatio-temporal delay , 2002 .

[95]  J. Sherratt A comparison of periodic travelling wave generation by Robin and Dirichlet boundary conditions in oscillatory reaction–diffusion equations , 2008 .

[96]  M. Kot,et al.  Discrete-time travelling waves: Ecological examples , 1992, Journal of mathematical biology.

[97]  S. Petrovskii,et al.  Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics. , 2001, Theoretical population biology.

[98]  Jonathan A. Sherratt,et al.  Oscillations and chaos behind predator–prey invasion: mathematical artifact or ecological reality? , 1997 .

[99]  K. Maginu Stability of periodic travelling wave solutions with large spatial periods in reaction-diffusion systems , 1981 .

[100]  Complex chemical reactions — A review , 2000 .

[101]  V. Selås Cyclic population fluctuations of herbivores as an effect of cyclic seed cropping of plants: the mast depression hypothesis , 1997 .

[102]  Arnd Scheel,et al.  The Saddle-Node of Nearly Homogeneous Wave Trains in Reaction–Diffusion Systems , 2007 .

[103]  Björn Sandstede,et al.  Defects in Oscillatory Media: Toward a Classification , 2004, SIAM J. Appl. Dyn. Syst..

[104]  Kenneth Showalter,et al.  Nonlinear Chemical Dynamics: Oscillations, Patterns, and Chaos , 1996 .

[105]  G. Bard Ermentrout,et al.  Transition fronts and localized structures in bistable reaction-diffusion equations , 1997 .

[106]  H. Engel,et al.  From trigger to phase waves and back again , 2006 .

[107]  M A Lewis,et al.  Ecological chaos in the wake of invasion. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[108]  Jonathan A. Sherratt,et al.  The effects of unequal diffusion coefficients on periodic travelling waves in oscillatory reaction–diffusion systems , 2007 .

[109]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[110]  Charles Hyde Smith Spatial trends in Canadian Snowshoe Hare, Lepus americanus, population cycles , 1983, The Canadian field-naturalist.

[111]  P. Banks,et al.  Vole cycles and predation , 2003 .

[112]  W. C. Allee The social life of animals , 1938 .

[113]  Stephen K. Scott,et al.  Oscillations, waves, and chaos in chemical kinetics , 1994 .

[114]  Jonathan A. Snerratt Periodic travelling waves in a family of deterministic cellular automata , 1996 .

[115]  Shinji Koga,et al.  Turbulized Rotating Chemical Waves , 1981 .

[116]  N. Kopell Target pattern solutions to reaction-diffusion equations in the presence of impurities , 1981 .

[117]  Björn Sandstede,et al.  Computing absolute and essential spectra using continuation , 2007 .

[118]  Thomas N. Sherratt,et al.  Use of coupled oscillator models to understand synchrony and travelling waves in populations of the field vole Microtus agrestis in northern England , 2000 .

[119]  W. Z. Lidicker Emigration as a Possible Mechanism Permitting the Regulation of Population Density Below Carrying Capacity , 1962, The American Naturalist.

[120]  T. Klemola,et al.  Geographically partitioned spatial synchrony among cyclic moth populations , 2006 .

[121]  T. Rafoss,et al.  Can sunspot activity and ultraviolet–B radiation explain cyclic outbreaks of forest moth pest species? , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[122]  Bernold Fiedler,et al.  Spatio-Temporal Dynamics of Reaction-Diffusion Patterns , 2003 .

[123]  A. Berryman,et al.  Detecting the causes of population cycles by analysis of R‐functions: the spruce needle‐miner, Epinotia tedella, and its parasitoids in Danish spruce plantations , 2005 .

[124]  M. Rantala,et al.  Impact of starvation on immune defense and other life-history traits of an outbreaking geometrid, Epirrita autumnata : a possible causal trigger for the crash phase of population cycle , 2007 .

[125]  O. Tenow,et al.  Waves and synchrony in Epirrita autumnata/Operophtera brumata outbreaks. II. Sunspot activity cannot explain cyclic outbreaks. , 2007, The Journal of animal ecology.

[126]  Nils Chr. Stenseth,et al.  Population Cycles and Parasitism , 1999 .

[127]  G. Bard Ermentrout,et al.  One-dimensional λ-ω target patterns: Empirical stability tests , 1980 .

[128]  Sergei Petrovskii,et al.  Allee effect makes possible patchy invasion in a predator-prey system. , 2002 .

[129]  Alan Hastings,et al.  Allee effects in biological invasions , 2005 .

[130]  Erkki Korpimäki,et al.  Experimental reduction of predators reverses the crash phase of small-rodent cycles , 1998 .

[131]  Sergei Petrovskii,et al.  A minimal model of pattern formation in a prey-predator system , 1999 .

[132]  Patrick S. Hagan,et al.  Spiral Waves in Reaction-Diffusion Equations , 1982 .

[133]  David A. Elston,et al.  Spatial asynchrony and periodic travelling waves in cyclic populations of field voles , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[134]  Alan A. Berryman,et al.  Population cycles : the case for trophic interactions , 2002 .

[135]  Steven R. Dunbar,et al.  Traveling waves in diffusive predator-prey equations: periodic orbits and point-to-periodic heteroclinic orbits , 1986 .

[136]  David A. Elston,et al.  Scale invariant spatio-temporal patterns of field vole density , 2001 .

[137]  John Billingham,et al.  Dynamics of a strongly nonlocal reaction–diffusion population model , 2004 .

[138]  A V Holden,et al.  Pursuit-evasion predator-prey waves in two spatial dimensions. , 2004, Chaos.

[139]  Scheel,et al.  Absolute versus convective instability of spiral waves , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[140]  Nancy Kopell,et al.  Plane Wave Solutions to Reaction‐Diffusion Equations , 1973 .

[141]  Wenzhang Huang,et al.  Periodic Traveling Waves for Diffusion Equations with Time Delayed and Non-local Responding Reaction , 2007 .

[142]  Grégoire Nicolis,et al.  Bifurcation analysis of reaction-diffusion equations—III. Chemical oscillations , 1976 .

[143]  J. J. Colbert,et al.  Wave trains in a model of gypsy moth population dynamics. , 1995, Chaos.

[144]  Andrew M. Liebhold,et al.  Waves of Larch Budmoth Outbreaks in the European Alps , 2002, Science.

[145]  Andrew M. Liebhold,et al.  Landscape mosaic induces traveling waves of insect outbreaks , 2006, Oecologia.

[146]  V. Selås UV-B-induced plant stress as a possible cause of ten-year hare cycles , 2005, Population Ecology.

[147]  C. Krebs,et al.  What Drives the 10-year Cycle of Snowshoe Hares? , 2001 .

[148]  G. O. Batzli,et al.  Population cycles of lemmings near Barrow, Alaska: a historical review , 2007, Acta Theriologica.

[149]  A. Watson,et al.  Experimental Prevention of a Population Cycle in Red Grouse , 1996 .

[150]  M. Saunders,et al.  Plant-Provided Food for Carnivorous Insects: a Protective Mutualism and Its Applications , 2009 .

[151]  J. Greenberg,et al.  Axi-Symmetric, Time-Periodic Solutions of Reaction-Diffusion Equations , 1978 .

[152]  Jack Xin,et al.  Front Propagation in Heterogeneous Media , 2000, SIAM Rev..

[153]  Bernd Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems , 2007 .

[154]  Ilkka Hanski,et al.  Specialist predators, generalist predators, and the microtine rodent cycle. , 1991 .

[155]  A. Angerbjörn,et al.  Geographical and temporal patterns of lemming population dynamics in Fennoscandia , 2001 .

[156]  Population Cycles of the Autumnal Moth in Fennoscandia , 2002 .

[157]  N. Britton Essential Mathematical Biology , 2004 .

[158]  Peter J. Hudson,et al.  Population Cycles and Parasitism , 1999, Science.

[159]  M. Tsyganov,et al.  Invasion Waves in Populations with Excitable Dynamics , 2005, Biological Invasions.

[160]  William M. Schaffer,et al.  THE GEOMETRY OF A POPULATION CYCLE: A MECHANISTIC MODEL OF SNOWSHOE HARE DEMOGRAPHY , 2001 .

[161]  W. Fagan,et al.  Invasion theory and biological control , 2002 .

[162]  M. Courbage,et al.  Wavelengths distribution of chaotic travelling waves in some cellular automata , 2001 .

[163]  X. Lambin,et al.  Movement patterns of a specialist predator, the weaselMustela nivalis exploiting asynchronous cyclic field voleMicrotus agrestis populations , 2007, Acta Theriologica.

[164]  Robert M. May,et al.  Theoretical Ecology: Principles and Applications , 1981 .

[165]  Arun V. Holden,et al.  Soliton-like phenomena in one-dimensional cross-diffusion systems: a predator-prey pursuit and evasion example , 2004, nlin/0406013.

[166]  N. Stenseth,et al.  Life-history traits of voles in a fluctuating population respond to the immediate environment , 2001, Nature.

[167]  Shinji Koga,et al.  Rotating Spiral Waves in Reaction-Diffusion Systems: Phase Singularities of Multi-Armed Waves , 1982 .

[168]  P. Coullet,et al.  Spatial Unfolding of Elementary Bifurcations , 2000 .

[169]  O. Bjørnstad,et al.  Spatial population dynamics: analyzing patterns and processes of population synchrony. , 1999, Trends in ecology & evolution.