Role of crystal size on swing-effect and adsorption induced structure transition of ZIF-8.

The flexibility and structure transition behaviour of ZIF-8 in a series of samples with different particle size has been studied using a combination of high-resolution N2 gas adsorption isotherms and, for the first time, a broad in situ PXRD and Rietveld analysis. During the stepped adsorption process, large particles showed a narrow adsorption/desorption pressure range with a shorter equilibrium time due to lower kinetic hindrance, deriving from higher amount of active sites. In situ PXRD showed that both the rotation of imidazole ring and a bend in the methyl group led to the gate opening of ZIF-8.

[1]  J. Silvestre-Albero,et al.  Gate-opening effect in ZIF-8: the first experimental proof using inelastic neutron scattering. , 2016, Chemical communications.

[2]  T. Korter,et al.  Investigation of the terahertz vibrational modes of ZIF-8 and ZIF-90 with terahertz time-domain spectroscopy , 2015, 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz).

[3]  D. Cazorla-Amorós,et al.  Beyond the H2/CO2 upper bound: one-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes , 2015 .

[4]  F. Kapteijn,et al.  Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4cs00437j Click here for additional data file. , 2015, Chemical Society reviews.

[5]  D. Fairen-jimenez,et al.  Mechanically and chemically robust ZIF-8 monoliths with high volumetric adsorption capacity , 2015 .

[6]  Jin‐Chong Tan,et al.  Identifying the role of terahertz vibrations in metal-organic frameworks: from gate-opening phenomenon to shear-driven structural destabilization. , 2014, Physical review letters.

[7]  Ryan P. Lively,et al.  Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals: Adsorption-Induced Transitions in ZIF-8 , 2014 .

[8]  A. Huang,et al.  Organosilica functionalized zeolitic imidazolate framework ZIF-90 membrane for CO2/CH4 separation , 2014 .

[9]  Hideki Tanaka,et al.  Adsorption-Induced Structural Transition of ZIF-8: A Combined Experimental and Simulation Study , 2014 .

[10]  G. Lloyd,et al.  Direct visualisation of carbon dioxide adsorption in gate-opening zeolitic imidazolate framework ZIF-7 , 2014 .

[11]  D. Farrusseng,et al.  Hierarchical Zeolitic Imidazolate Framework‐8 Catalyst for Monoglyceride Synthesis , 2013 .

[12]  T. Maji,et al.  Temperature induced structural transformations and gas adsorption in the zeolitic imidazolate framework ZIF-8: a Raman study. , 2013, The journal of physical chemistry. A.

[13]  Xiaoliang Zhang,et al.  Thermal Conductivity of Zeolitic Imidazolate Framework-8: A Molecular Simulation Study , 2013 .

[14]  Koji Kida,et al.  Formation of high crystalline ZIF-8 in an aqueous solution , 2013 .

[15]  S. Kitagawa,et al.  Shape-Memory Nanopores Induced in Coordination Frameworks by Crystal Downsizing , 2013, Science.

[16]  Jie‐Peng Zhang,et al.  Single-crystal X-ray diffraction and Raman spectroscopy studies of isobaric N2 adsorption in SOD-type metal-organic zeolites. , 2012, Chemical communications.

[17]  D. Sholl,et al.  Quantifying large effects of framework flexibility on diffusion in MOFs: CH4 and CO2 in ZIF-8. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[18]  A. Torrisi,et al.  Flexibility and swing effect on the adsorption of energy-related gases on ZIF-8: combined experimental and simulation study. , 2012, Dalton transactions.

[19]  Ryan P. Lively,et al.  Unexpected Molecular Sieving Properties of Zeolitic Imidazolate Framework-8. , 2012, The journal of physical chemistry letters.

[20]  T. Valdés-Solís,et al.  Understanding Gas-Induced Structural Deformation of ZIF-8. , 2012, The journal of physical chemistry letters.

[21]  N. Phan,et al.  Metal–organic frameworks for catalysis: the Knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst , 2012 .

[22]  J. Parker,et al.  In Situ Gas Supply System on the Powder Diffraction Beamline I11 at Diamond Light Source , 2012 .

[23]  S. Parsons,et al.  Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. , 2011, Journal of the American Chemical Society.

[24]  Klaus Huber,et al.  Controlling Zeolitic Imidazolate Framework Nano- and Microcrystal Formation: Insight into Crystal Growth by Time-Resolved In Situ Static Light Scattering , 2011 .

[25]  J. Jasinski,et al.  Structural evolution of zeolitic imidazolate framework-8. , 2010, Journal of the American Chemical Society.

[26]  François-Xavier Coudert The osmotic framework adsorbed solution theory: predicting mixture coadsorption in flexible nanoporous materials. , 2010, Physical chemistry chemical physics : PCCP.

[27]  D. Fairen-jimenez,et al.  Unusual adsorption behavior on metal-organic frameworks. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[28]  Hae‐Kwon Jeong,et al.  Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[29]  J. Caro,et al.  Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. , 2009, Journal of the American Chemical Society.

[30]  A. Cheetham,et al.  The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. , 2009, Angewandte Chemie.

[31]  J. Parker,et al.  Beamline I11 at Diamond: a new instrument for high resolution powder diffraction. , 2009, The Review of scientific instruments.

[32]  Hideki Tanaka,et al.  Free energy analysis for adsorption-induced lattice transition of flexible coordination framework. , 2009, The Journal of chemical physics.

[33]  A. Feldhoff,et al.  Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework , 2009 .

[34]  T. Yildirim,et al.  Methane Sorption in Nanoporous Metal−Organic Frameworks and First-Order Phase Transition of Confined Methane , 2009 .

[35]  T. Yildirim,et al.  Hydrogen and Methane Adsorption in Metal−Organic Frameworks: A High-Pressure Volumetric Study , 2007 .

[36]  Wei Zhou,et al.  Hydrogen storage in a prototypical zeolitic imidazolate framework-8. , 2007, Journal of the American Chemical Society.

[37]  John S. O. Evans,et al.  Parametric Rietveld refinement , 2007, Journal of applied crystallography.

[38]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[39]  Xiao-Ming Chen,et al.  Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. , 2006, Angewandte Chemie.

[40]  R. Peterson The Impact Statement--Part II. , 1976, Science.

[41]  E. Robens Adsorption by powders and porous solids. F. Rouquerol, J. Rouquerol, K. Sing, Academic Press, San Diego 1999, ISBN: 0‐12‐598920‐2, 467 S. £79.95 , 1999 .