The Electronic Disorder Landscape of Mixed Halide Perovskites

Bandgap tunability of lead mixed-halide perovskites makes them promising candidates for various applications in optoelectronics since they exhibit sharp optical absorption onsets despite the presence of disorder from halide alloying. Here we use localization landscape theory to reveal that the static disorder due to compositional alloying for iodide:bromide perovskite contributes at most 3 meV to the Urbach energy. Our modelling reveals that the reason for this small contribution is due to the small effective masses in perovskites, resulting in a natural length scale of around 20nm for the “effective confining potential” for electrons and holes, with short range potential fluctuations smoothed out. The increase in Urbach energy across the compositional range agrees well with our optical absorption measurements. We model systems of sizes up to 80 nm in three dimensions, allowing us to explore halide segregation, accurately reproducing the experimentally observed absorption spectra and demonstrating the scope of our method to model electronic structures on large length scales. Our results suggest that we should look beyond static contribution and focus on the dynamic temperature dependent contribution to the Urbach energy.

[1]  Thomas G. Allen,et al.  Life on the Urbach Edge. , 2022, The journal of physical chemistry letters.

[2]  Oskar J. Sandberg,et al.  Static Disorder in Lead Halide Perovskites , 2022, The journal of physical chemistry letters.

[3]  M. Johnston,et al.  Optoelectronic Properties of Mixed Iodide–Bromide Perovskites from First-Principles Computational Modeling and Experiment , 2022, The journal of physical chemistry letters.

[4]  Wigner-Weyl description of light absorption in disordered semiconductor alloys using the localization landscape theory , 2021, Physical Review B.

[5]  Duncan N. Johnstone,et al.  Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases , 2021, Science.

[6]  J. Bisquert Unique Curve for the Radiative Photovoltage Deficit Caused by the Urbach Tail. , 2021, The journal of physical chemistry letters.

[7]  R. Friend,et al.  Impact of Orientational Glass Formation and Local Strain on Photo-Induced Halide Segregation in Hybrid Metal-Halide Perovskites , 2021, The journal of physical chemistry. C, Nanomaterials and interfaces.

[8]  R. Friend,et al.  Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes , 2021, Nature communications.

[9]  J. Even,et al.  Electronic Structure and Optical Properties of Mixed Iodine/Bromine Lead Perovskites. To Mix or Not to Mix? , 2021, Advanced Optical Materials.

[10]  B. Rech,et al.  Nano-emitting Heterostructures Violate Optical Reciprocity and Enable Efficient Photoluminescence in Halide-Segregated Methylammonium-Free Wide Bandgap Perovskites , 2021 .

[11]  G. Brocks,et al.  Unified theory for light-induced halide segregation in mixed halide perovskites , 2020, Nature Communications.

[12]  S. Ferrari,et al.  Author contributions , 2021 .

[13]  R. Friend,et al.  Metal halide perovskites for light-emitting diodes , 2020, Nature Materials.

[14]  Hui Li,et al.  Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment. , 2020, Chemical reviews.

[15]  A. Walsh,et al.  Lattice Compression Increases the Activation Barrier for Phase Segregation in Mixed-Halide Perovskites , 2020, ACS energy letters.

[16]  Peitao Liu,et al.  Tunable relativistic quasiparticle electronic and excitonic behavior of the FAPb(I1-xBrx)3 alloy. , 2020, Physical chemistry chemical physics : PCCP.

[17]  M. Johnston,et al.  Revealing the origin of voltage loss in mixed-halide perovskite solar cells , 2020, Energy & Environmental Science.

[18]  Yi Du,et al.  Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation , 2020, Nature Energy.

[19]  R. Friend,et al.  A Highly Emissive Surface Layer in Mixed‐Halide Multication Perovskites , 2019, Advanced materials.

[20]  A. Fejfar,et al.  Temperature Dependence of the Urbach Energy in Lead Iodide Perovskites. , 2019, The journal of physical chemistry letters.

[21]  G. Brocks,et al.  Absolute energy level positions in tin- and lead-based halide perovskites , 2019, Nature Communications.

[22]  P. Kamat,et al.  Mixed Halide Perovskite Solar Cells. Consequence of Iodide Treatment on Phase Segregation Recovery , 2018, ACS Energy Letters.

[23]  A. Abate,et al.  Strategies toward Stable Perovskite Solar Cells , 2018, Advanced Materials Interfaces.

[24]  Jeffrey A. Christians,et al.  A quantitative and spatially resolved analysis of the performance-bottleneck in high efficiency, planar hybrid perovskite solar cells , 2018 .

[25]  William R. Erwin,et al.  Mixed halide hybrid perovskites: a paradigm shift in photovoltaics , 2018 .

[26]  H. Fujiwara,et al.  Tail state formation in solar cell materials: First principles analyses of zincblende, chalcopyrite, kesterite, and hybrid perovskite crystals , 2018, Physical Review Materials.

[27]  P. Kamat,et al.  Light-Induced Anion Phase Segregation in Mixed Halide Perovskites , 2018 .

[28]  J. Michopoulos,et al.  Bright triplet excitons in caesium lead halide perovskites , 2017, Nature.

[29]  T. Buonassisi,et al.  Promises and challenges of perovskite solar cells , 2017, Science.

[30]  P. Kamat,et al.  Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites , 2017, Nature Communications.

[31]  Alex K.-Y. Jen,et al.  Current-Induced Phase Segregation in Mixed Halide Hybrid Perovskites and its Impact on Two-Terminal Tandem Solar Cell Design , 2017 .

[32]  P. Kamat,et al.  A Victim of Halide Ion Segregation. How Light Soaking Affects Solar Cell Performance of Mixed Halide Lead Perovskites , 2017 .

[33]  M. Johnston,et al.  Band‐Tail Recombination in Hybrid Lead Iodide Perovskite , 2017 .

[34]  R. Friend,et al.  Defect-Assisted Photoinduced Halide Segregation in Mixed-Halide Perovskite Thin Films , 2017 .

[35]  C. Weisbuch,et al.  Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes , 2017, 1704.05533.

[36]  James S. Speck,et al.  Localization landscape theory of disorder in semiconductors. II. Urbach tails of disordered quantum well layers , 2017 .

[37]  Claude Weisbuch,et al.  Localization landscape theory of disorder in semiconductors. I. Theory and modeling , 2017, 1704.05512.

[38]  R. Friend,et al.  Chemically diverse and multifunctional hybrid organic–inorganic perovskites , 2017 .

[39]  David T. Limmer,et al.  Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites. , 2016, Nano letters.

[40]  K. Zhu,et al.  Effects of alloying on the optical properties of organic–inorganic lead halide perovskite thin films , 2016 .

[41]  Anders Hagfeldt,et al.  Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells , 2016 .

[42]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[43]  Aron Walsh,et al.  Thermodynamic Origin of Photoinstability in the CH3NH3Pb(I1–xBrx)3 Hybrid Halide Perovskite Alloy , 2016, The journal of physical chemistry letters.

[44]  Jinsong Huang,et al.  Stabilized Wide Bandgap MAPbBrxI3–x Perovskite by Enhanced Grain Size and Improved Crystallinity , 2015, Advanced science.

[45]  Marcel Filoche,et al.  Effective Confining Potential of Quantum States in Disordered Media. , 2015, Physical review letters.

[46]  H. Snaith,et al.  Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors , 2015, 1511.06507.

[47]  A. Walsh,et al.  Cubic Perovskite Structure of Black Formamidinium Lead Iodide, α-[HC(NH2)2]PbI3, at 298 K , 2015, The Journal of Physical Chemistry Letters.

[48]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[49]  H. Snaith,et al.  Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites , 2015, Nature Physics.

[50]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[51]  Eric T. Hoke,et al.  Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file. , 2014, Chemical science.

[52]  Sabre Kais,et al.  Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3 , 2014, Nature Communications.

[53]  Su-Huai Wei,et al.  Anomalous Alloy Properties in Mixed Halide Perovskites. , 2014, The journal of physical chemistry letters.

[54]  Felix Deschler,et al.  Bright light-emitting diodes based on organometal halide perovskite. , 2014, Nature nanotechnology.

[55]  R. Friend,et al.  Preparation of Single-Phase Films of CH3NH3Pb(I1-xBrx)3 with Sharp Optical Band Edges. , 2014, The journal of physical chemistry letters.

[56]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[57]  Michael Grätzel,et al.  First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications , 2013 .

[58]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[59]  S. Mayboroda,et al.  Universal mechanism for Anderson and weak localization , 2012, Proceedings of the National Academy of Sciences.

[60]  J. Bude,et al.  First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass. , 2011, Physical review letters.

[61]  Christophe Geuzaine,et al.  A general environment for the treatment of discrete problems and its application to the finite element method , 1998 .

[62]  David Alan Drabold,et al.  Finite-temperature properties of amorphous silicon. , 1991, Physical review letters.

[63]  Ferreira,et al.  Electronic properties of random alloys: Special quasirandom structures. , 1990, Physical review. B, Condensed matter.

[64]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[65]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[66]  F. Urbach The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids , 1953 .