Unsupervised fuzzy learning and cluster seeking

This paper presents a new approach to unsupervised pattern classification. The classification scheme consists of two main stages. The first one is an unsupervised fuzzy learning procedure, which allows, using a similarity measure and a corresponding threshold, to seek clusters within a set of totally unlabeled samples. It provides, for each detected cluster, a good initial prototype as well as the membership degree of each sample. The second stage is an optimization procedure involving the fuzzy c-means (FCM) algorithm. Both procedures are repeated for different values of the similarity threshold, and three validity criteria are used to assess and rank the quality of all resulting partitions. The effectiveness of this approach is demonstrated, for different parameter values, on both artificial and real test data.

[1]  Abdelaziz Bouroumi,et al.  A coevolutionary genetic algorithm using fuzzy clustering , 2000, Intell. Data Anal..

[2]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[3]  James M. Keller,et al.  Will the real iris data please stand up? , 1999, IEEE Trans. Fuzzy Syst..

[4]  J. Bezdek Cluster Validity with Fuzzy Sets , 1973 .

[5]  Terrance L. Huntsberger,et al.  PARALLEL SELF-ORGANIZING FEATURE MAPS FOR UNSUPERVISED PATTERN RECOGNITION , 1990 .

[6]  James C. Bezdek,et al.  Multiple-prototype classifier design , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[7]  James C. Bezdek,et al.  On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..

[8]  James C. Bezdek,et al.  Nearest prototype classification: clustering, genetic algorithms, or random search? , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[9]  James C. Bezdek,et al.  Validity-guided (re)clustering with applications to image segmentation , 1996, IEEE Trans. Fuzzy Syst..

[10]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[11]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[12]  James C. Bezdek,et al.  An integrated approach to fuzzy learning vector quantization and fuzzy c-means clustering , 1997, IEEE Trans. Fuzzy Syst..

[13]  Michael J. Sabin,et al.  Convergence and Consistency of Fuzzy c-means/ISODATA Algorithms , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Teuvo Kohonen,et al.  Self-organization and associative memory: 3rd edition , 1989 .

[15]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[17]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  M. P. Windham Cluster validity for fuzzy clustering algorithms , 1981 .

[19]  Boudewijn P. F. Lelieveldt,et al.  A new cluster validity index for the fuzzy c-mean , 1998, Pattern Recognit. Lett..

[20]  James C. Bezdek,et al.  Some new indexes of cluster validity , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[21]  James C. Bezdek,et al.  Correction to "On Cluster Validity for the Fuzzy c-Means Model" [Correspondence] , 1997, IEEE Trans. Fuzzy Syst..

[22]  James C. Bezdek,et al.  Fuzzy Kohonen clustering networks , 1994, Pattern Recognit..

[23]  James M. Keller,et al.  Fuzzy Models and Algorithms for Pattern Recognition and Image Processing , 1999 .

[24]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[25]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .