The decidability of the intensional fragment of classical linear logic

Intensional classical linear logic (MELL) is proved decidable.Intensional interlinear logic (RLL) is proved decidable.We adapt Kripke's method used to prove decidability for some relevance logics.The semi-relevant RLL emerges as a logic superior to MELL in this context.Triple and double inductive proofs of cut theorems are explained in some detail. The intensional fragment of classical propositional linear logic combines modalities with contraction-free relevance logic - adding modalized versions of the thinning and contraction rules. This paper provides a proof of the decidability of this logic based on a sequent calculus formulation. Some related logics and some other fragments of linear logic are also shown decidable.

[1]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[2]  J. Girard The Blind Spot: Lectures on Logic , 2011 .

[3]  Katalin Bimbó,et al.  On the decidability of implicational ticket entailment , 2013, The Journal of Symbolic Logic.

[4]  R. Meyer,et al.  Kripke, Belnap, Urquhart and Relevant decidability & complexity , 1998 .

[5]  Andrea Masini,et al.  On the fine structure of the exponential rule , 1995 .

[6]  Katalin Bimbó,et al.  Generalized Galois Logics: Relational Semantics of Nonclassical Logical Calculi , 2008 .

[7]  Robert K. Meyer,et al.  Belnap, Urquhart and Relevant Decidability & Complexity. "Das ist nicht Mathematik, das ist Theologie." , 1998, CSL.

[8]  Nuel Belnap,et al.  Linear Logic Displayed , 1989, Notre Dame J. Formal Log..

[9]  J. Michael Dunn,et al.  Positive modal logic , 1995, Stud Logica.

[10]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[11]  Alexey P. Kopylov Decidability of Linear Affine Logic , 2001, Inf. Comput..

[12]  Katalin Bimbó,et al.  Proof Theory: Sequent Calculi and Related Formalisms , 2014 .

[13]  Patrick Lincoln,et al.  Constant-Only Multiplicative Linear Logic is NP-Complete , 1992, Theor. Comput. Sci..

[14]  Gerard Allwein,et al.  Kripke models for linear logic , 1993, Journal of Symbolic Logic.

[15]  Yves Lafont,et al.  Soft linear logic and polynomial time , 2004, Theor. Comput. Sci..

[16]  Dale Miller,et al.  Algorithmic specifications in linear logic with subexponentials , 2009, PPDP '09.

[17]  Jean-Yves Girard,et al.  Linear logic: its syntax and semantics , 1995 .

[18]  R. Smullyan First-Order Logic , 1968 .

[19]  Michael A. McRobbie,et al.  Automated theorem proving for non-classical logics , 1988, Research Notes in Theoretical Computer Science.

[20]  Michael A. McRobbie,et al.  Multisets and relevant implication I , 1982 .

[21]  N. Belnap,et al.  Entailment. The Logic of Relevance and Necessity. Volume I , 1978 .

[22]  Nuel D. Belnap,et al.  Entailment : the logic of relevance and necessity , 1975 .

[23]  Alasdair Urquhart,et al.  The Complexity of Linear Logic with Weakening , 2002 .

[24]  Robert K. Meyer,et al.  Improved Decision Procedures for Pure Relevant Logic , 2001 .

[25]  Haskell B. Curry,et al.  Foundations of Mathematical Logic , 1964 .

[26]  Alasdair Urquhart,et al.  The Complexity of Propositional Proofs , 1995, Bulletin of Symbolic Logic.

[27]  Avron Arnon The semantics and proof theory of linear logic , 1988 .

[28]  Nuel D. Belnap,et al.  A Decision Procedure For the System EĪ of Entailment with Negation , 1965 .

[29]  Nuel Belnap,et al.  Linear Analytic Tableaux , 1995, TABLEAUX.

[30]  Saul A. Kripke,et al.  Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .

[31]  P. Lincoln Deciding provability of linear logic formulas , 1995 .

[32]  J. Michael Dunn,et al.  Relevance Logic and Entailment , 1986 .

[33]  Carl A. Gunter,et al.  Nets as Tensor Theories , 1989 .

[34]  Arnon Avron,et al.  What is relevance logic? , 2014, Ann. Pure Appl. Log..