Status and prospects of hybrid and injection-locked TEA CO 2 lasers for LIDAR and nonlinear optics applications

The current status of hybrid and injection-locked single-mode TEA CO 2 laser systems is examined in relation to two important applications. It is argued that the operational characteristics of injection-locked systems are particularly well-suited for LIDAR applications and that the properties of hybrid devices impose a strong bias toward nonlinear optics applications, in particular, optical signal processing research.

[1]  A. Gondhalekar,et al.  Single Longitudinal Mode Operation of High Pressure Pulsed CO_sub.2 Lasers , 1973 .

[2]  G. Schafer,et al.  Single longitudinal mode operation of a CO 2 TEA laser by injection locking with a tunable CO 2 waveguide laser , 1982 .

[3]  K. R. Rickwood,et al.  High repetition rate mini TEA CO2 laser using a semiconductor preionizer , 1982 .

[4]  D. Willetts,et al.  An investigation into the origin of frequency sweeping in a hybrid TEA CO2 laser , 1982 .

[5]  Dallas N. Barr Hybrid TE-TEA CO_2 laser , 1981 .

[6]  See Leang Chin,et al.  Various techniques for producing a single longitudinal mode TEA-CO2 laser , 1980 .

[7]  G. Salvetti,et al.  Single longitudinal and transverse mode operation of a hybrid unstable resonator TE CO2 laser , 1982 .

[8]  Harvey N. Rutt Heterodyne frequency offset locking of a miniature TEA laser , 1984 .

[9]  Ajoy K. Kar,et al.  Optical bistability in InSb at room temperature with two‐photon excitation , 1983 .

[10]  M. Verreault,et al.  Frequency and amplitude characteristics of a high repetition rate hybrid TEA-CO 2 laser , 1978 .

[11]  Pierre-Andre Belanger,et al.  Smooth CO2 laser pulses of high power , 1977 .

[12]  E. Yablonovitch,et al.  Digital feedback stabilization of a single-axial-mode CO2 TEA laser. , 1979, The Review of scientific instruments.

[13]  T. R. Burkes,et al.  Effect of a small capacitor in parallel with a pulsed CO 2 TEA laser , 1976 .

[14]  J. Mathew,et al.  Injection locking of wide-aperture TEA CO2 lasers. , 1983, Applied optics.

[15]  P. Pace,et al.  A frequency stabilized compact high repetition rate TEA-CO2laser , 1980, IEEE Journal of Quantum Electronics.

[16]  M. Harris,et al.  Scaling laws for the intrapulse frequency stability of an injection mode selected TEA CO 2 laser , 1983 .

[17]  Michael J. Kavaya,et al.  Dependence of injection locking of a TEA CO 2 laser on intensity of injected radiation , 1982 .

[18]  Uri P. Oppenheim,et al.  Pulse evolution and mode selection characteristics in a TEA-CO2 laser perturbed by injection of external radiation , 1983 .

[19]  Ajoy K. Kar,et al.  Polarization coupling effects in transversely excited atmospheric CO2 lasers: Application to single axial mode operation , 1983 .

[20]  B. S. Collins,et al.  A CO2 laser rangefinder using heterodyne detection and chirp pulse compression , 1981 .

[21]  M. R. Taghizadeh,et al.  InSb devices: transphasors with high gain, bistable swtiches and sequential logic gates , 1984, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[22]  G. McClelland,et al.  Injection locked single mode operation of a tea CO2 laser with high energy extraction , 1981 .

[23]  R. T. Menzies,et al.  Tunable single‐longitudinal‐mode operation of an injection‐locked TEA CO2 laser , 1979 .

[24]  P. Lavigne,et al.  Injection locking and mode selection in TEA-CO 2 laser oscillators , 1976 .

[25]  Ajoy K. Kar,et al.  Time resolved self-defocusing in InSb at room temperature , 1985 .

[26]  Ajoy K. Kar,et al.  Injection-locking of TEA CO2 lasers by an orthogonally-polarised injection source , 1982 .

[27]  Robert G. Harrison,et al.  Theoretical and experimental study of the injection-locked TEA CO 2 laser incorporating electron-plasma prepulse chirp phenomena , 1985 .