Characteristic classes of Hilbert schemes of points via symmetric products

We obtain a formula for the generating series of (the push-forward under the Hilbert-Chow morphism of) the Hirzebruch homology characteristic classes of the Hilbert schemes of points for a smooth quasi-projective variety of arbitrary pure dimension. This result is based on a geometric construction of a motivic exponentiation generalizing the notion of motivic power structure, as well as on a formula for the generating series of the Hirzebruch homology characteristic classes of symmetric products. We apply the same methods for the calculation of generating series formulae for the Hirzebruch classes of the push-forwards of "virtual motives" of Hilbert schemes of a threefold. As corollaries, we obtain counterparts for the MacPherson (and Aluffi) Chern classes of Hilbert schemes of a smooth quasi-projective variety (resp. for threefolds). For a projective Calabi-Yau threefold, the latter yields a Chern class version of the dimension zero MNOP conjecture.

[1]  F. Catanese Topological methods in algebraic geometry , 2015 .

[2]  S. Cappell,et al.  Equivariant Characteristic Classes of Singular Complex Algebraic Varieties , 2010, 1004.1844.

[3]  Joerg Schuermann Nearby cycles and characteristic classes of singular spaces , 2010, 1003.2343.

[4]  S. Cappell,et al.  Characteristic classes of symmetric products of complex quasi-projective varieties , 2010, 1008.4299.

[5]  K. Behrend Donaldson-Thomas type invariants via microlocal geometry , 2009 .

[6]  J. Bryan,et al.  Motivic degree zero Donaldson–Thomas invariants , 2009, 0909.5088.

[7]  S. Cappell,et al.  Characteristic classes of complex hypersurfaces , 2009, 0908.3240.

[8]  A. Dimca,et al.  The Milnor fibre of the Pfaffian and the Hilbert scheme of four points on C^3 , 2009, 0904.2419.

[9]  E. Gorsky Adams operations and power structures , 2008, 0803.3118.

[10]  T. Ohmoto Generating functions of orbifold Chern classes I: symmetric products , 2006, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  Marc A. Nieper-Wisskirchen Characteristic classes of the Hilbert schemes of points on non-compact simply-connected surfaces , 2007, 0707.3268.

[12]  Marc A. Nieper-Wisskirchen,et al.  GENERATING SERIES IN THE COHOMOLOGY OF HILBERT SCHEMES OF POINTS ON SURFACES , 2006, math/0610837.

[13]  R. Pandharipande,et al.  Gromov–Witten theory and Donaldson–Thomas theory, I , 2003, Compositio Mathematica.

[14]  B. Fantechi,et al.  Symmetric Obstruction Theories and Hilbert Schemes of Points on Threefolds , 2005, math/0512556.

[15]  J. Brasselet,et al.  HIRZEBRUCH CLASSES AND MOTIVIC CHERN CLASSES FOR SINGULAR SPACES , 2005, math/0503492.

[16]  S. Gusein-Zade,et al.  Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points , 2004, math/0407204.

[17]  S. Gusein-Zade,et al.  A power structure over the Grothendieck ring of varieties , 2004 .

[18]  A. Libgober,et al.  Elliptic genera of singular varieties , 2000, math/0007108.

[19]  E. Looijenga Motivic measures , 2000, math/0006220.

[20]  M. Kapranov The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups , 2000, math/0001005.

[21]  S. Yokura A singular Riemann-Roch for Hirzebruch characteristics , 1998 .

[22]  E. Getzler Mixed Hodge structures of configuration spaces , 1995, alg-geom/9510018.

[23]  W. Soergel,et al.  Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces , 1993 .

[24]  S. Cappell,et al.  Stratifiable maps and topological invariants , 1991 .

[25]  L. Göttsche The Betti numbers of the Hilbert scheme of points on a smooth projective surface , 1990 .

[26]  Shoji Yokura,et al.  Characteristic classes for singular varieties , 1987 .

[27]  G. Ellingsrud,et al.  On the homology of the Hilbert scheme of points in the plane , 1987 .

[28]  P. E. Newstead RIEMANN–ROCH ALGEBRA (Grundlehren der mathematischen Wissenschaften 277) , 1987 .

[29]  W. Fulton,et al.  Riemann-Roch Algebra , 1985 .

[30]  Boudewijn Moonen Das Lefschetz-Riemann-Roch-Theorem für singuläre Varietäten , 1978 .

[31]  W. Fulton,et al.  Riemann-roch for singular varieties , 1975 .

[32]  Robert MacPherson,et al.  Chern Classes for Singular Algebraic Varieties , 1974 .