Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection

[1]  H. Varmus,et al.  Both substrate and target oligonucleotide sequences affect in vitro integration mediated by human immunodeficiency virus type 1 integrase protein produced in Saccharomyces cerevisiae , 1992, Journal of virology.

[2]  G. Felsenfeld,et al.  Chromatin as an essential part of the transcriptional mechanim , 1992, Nature.

[3]  Dana L. Smith,et al.  A molecular mechanism for combinatorial control in yeast: MCM1 protein sets the spacing and orientation of the homeodomains of an α2 dimer , 1992, Cell.

[4]  H. Varmus,et al.  Retroviral integration into minichromosomes in vitro. , 1992, The EMBO journal.

[5]  T. Mitchison,et al.  Cell cycle control of higher-order chromatin assembly around naked DNA in vitro , 1991, The Journal of cell biology.

[6]  R. Kornberg,et al.  Irresistible force meets immovable object: Transcription and the nucleosome , 1991, Cell.

[7]  M. Shimizu,et al.  Nucleosomes are positioned with base pair precision adjacent to the alpha 2 operator in Saccharomyces cerevisiae. , 1991, The EMBO journal.

[8]  J. Workman,et al.  Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains. , 1991, Genes & development.

[9]  J. Coffin,et al.  Efficient autointegration of avian retrovirus DNA in vitro , 1990, Journal of virology.

[10]  A. Skalka,et al.  The avian retroviral IN protein is both necessary and sufficient for integrative recombination in vitro , 1990, Cell.

[11]  F. Bushman,et al.  Retroviral DNA integration directed by HIV integration protein in vitro. , 1990, Science.

[12]  Robert Craigie,et al.  The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro , 1990, Cell.

[13]  P. Brown,et al.  Human immunodeficiency virus integration in a cell-free system , 1990, Journal of virology.

[14]  K. Harbers,et al.  Retroviral integration sites in transgenic Mov mice frequently map in the vicinity of transcribed DNA regions , 1990, Journal of virology.

[15]  W. Haseltine,et al.  Integration of human immunodeficiency virus type 1 DNA in vitro. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[16]  M. Beato,et al.  Nucleosome positioning modulates accessibility of regulatory proteins to the mouse mammary tumor virus promoter , 1990, Cell.

[17]  M. Breindl,et al.  Transcriptionally active genome regions are preferred targets for retrovirus integration , 1990, Journal of virology.

[18]  P. Brown,et al.  A nucleoprotein complex mediates the integration of retroviral DNA. , 1989, Genes & development.

[19]  P. Brown,et al.  Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[20]  T. Perlmann,et al.  Specific glucocorticoid receptor binding to DNA reconstituted in a nucleosome. , 1988, The EMBO journal.

[21]  K. Mizuuchi,et al.  Retroviral DNA integration: Structure of an integration intermediate , 1988, Cell.

[22]  R. Sauer,et al.  Flexibility of the yeast alpha 2 repressor enables it to occupy the ends of its operator, leaving the center free. , 1988, Genes & development.

[23]  J. Coffin,et al.  Highly preferred targets for retrovirus integration , 1988, Cell.

[24]  D. Suck,et al.  Structure refined to 2Å of a nicked DNA octanucleotide complex with DNase I , 1988, Nature.

[25]  P. Brown,et al.  Correct integration of retroviral DNA in vitro , 1987, Cell.

[26]  R. Jaenisch,et al.  Retrovirus integration and chromatin structure: Moloney murine leukemia proviral integration sites map near DNase I-hypersensitive sites , 1987, Journal of virology.

[27]  H L Robinson,et al.  Acceptor sites for retroviral integrations map near DNase I-hypersensitive sites in chromatin , 1986, Journal of virology.

[28]  H R Drew,et al.  DNA bending and its relation to nucleosome positioning. , 1985, Journal of molecular biology.

[29]  I. Herskowitz,et al.  A repressor (MATα2 product) and its operator control expression of a set of cell type specific genes in yeast , 1985, Cell.

[30]  F. Thoma,et al.  Local protein–DNA interactions may determine nucleosome positions on yeast plasmids , 1985, Nature.

[31]  S. Goff,et al.  Insertion mutagenesis of embryonal carcinoma cells by retroviruses. , 1985, Science.

[32]  W. Kabsch,et al.  Three‐dimensional structure of bovine pancreatic DNase I at 2.5 A resolution. , 1984, The EMBO journal.

[33]  L. Bergman,et al.  Nuclease digestion of circular TRP1ARS1 chromatin reveals positioned nucleosomes separated by nuclease-sensitive regions. , 1984, Journal of molecular biology.

[34]  H. Drew Structural specificities of five commonly used DNA nucleases. , 1984, Journal of molecular biology.

[35]  H. Drew,et al.  DNA structural variations in the E. coli tyrT promoter , 1984, Cell.

[36]  M. Grunstein Histone function in transcription. , 1990, Annual review of cell biology.

[37]  C. Calladine,et al.  1 New Approaches to DNA in the Crystal and in Solution , 1990 .

[38]  A. Klug,et al.  2 Bending of DNA in Nucleoprotein Complexes , 1990 .

[39]  D. S. Gross,et al.  Nuclease hypersensitive sites in chromatin. , 1988, Annual review of biochemistry.

[40]  F. Thoma,et al.  Core particle, fiber, and transcriptionally active chromatin structure. , 1986, Annual review of cell biology.

[41]  R. Simpson,et al.  Structural features of a phased nucleosome core particle. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[42]  R. Kornberg,et al.  Structure of chromatin. , 1977, Annual review of biochemistry.