Online Learning of Commission Avoidant Portfolio Ensembles

We present a novel online ensemble learning strategy for portfolio selection. The new strategy controls and exploits any set of commission-oblivious portfolio selection algorithms. The strategy handles transaction costs using a novel commission avoidance mechanism. We prove a logarithmic regret bound for our strategy with respect to optimal mixtures of the base algorithms. Numerical examples validate the viability of our method and show significant improvement over the state-of-the-art.

[1]  Allan Borodin,et al.  Online computation and competitive analysis , 1998 .

[2]  T. Cover Universal Portfolios , 1996 .

[3]  A. Singer,et al.  UNIVERSAL SEMICONSTANT REBALANCED PORTFOLIOS , 2010 .

[4]  László Györfi,et al.  Nonparametric nearest neighbor based empirical portfolio selection strategies , 2008 .

[5]  Steven C. H. Hoi,et al.  PAMR: Passive aggressive mean reversion strategy for portfolio selection , 2012, Machine Learning.

[6]  Yoram Singer,et al.  On‐Line Portfolio Selection Using Multiplicative Updates , 1998, ICML.

[7]  Martin Zinkevich,et al.  Online Convex Programming and Generalized Infinitesimal Gradient Ascent , 2003, ICML.

[8]  Stephen P. Boyd,et al.  Portfolio optimization with linear and fixed transaction costs , 2007, Ann. Oper. Res..

[9]  Hiroshi Konno,et al.  Portfolio optimization problem under concave transaction costs and minimal transaction unit constraints , 2001, Math. Program..

[10]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[11]  Marc Teboulle,et al.  Mirror descent and nonlinear projected subgradient methods for convex optimization , 2003, Oper. Res. Lett..

[12]  Bin Li,et al.  Robust Median Reversion Strategy for Online Portfolio Selection , 2013, IEEE Transactions on Knowledge and Data Engineering.

[13]  Allan Borodin,et al.  Can We Learn to Beat the Best Stock , 2003, NIPS.

[14]  Arindam Banerjee,et al.  Online Portfolio Selection with Group Sparsity , 2014, AAAI.

[15]  László Györfi,et al.  KERNEL-BASED SEMI-LOG-OPTIMAL EMPIRICAL PORTFOLIO SELECTION STRATEGIES , 2007 .

[16]  Gábor Lugosi,et al.  Prediction, learning, and games , 2006 .

[17]  Erik Ordentlich,et al.  Universal portfolios with side information , 1996, IEEE Trans. Inf. Theory.

[18]  Ambuj Tewari,et al.  Composite objective mirror descent , 2010, COLT 2010.

[19]  Robert E. Schapire,et al.  Algorithms for portfolio management based on the Newton method , 2006, ICML.

[20]  Elad Hazan,et al.  Logarithmic regret algorithms for online convex optimization , 2006, Machine Learning.

[21]  Adam Tauman Kalai,et al.  Universal Portfolios With and Without Transaction Costs , 1997, COLT '97.

[22]  Bin Li,et al.  Semi-Universal Portfolios with Transaction Costs , 2015, IJCAI.

[23]  F. R. Rosendaal,et al.  Prediction , 2015, Journal of thrombosis and haemostasis : JTH.

[24]  Andrew C. Singer,et al.  Switching Strategies for Sequential Decision Problems With Multiplicative Loss With Application to Portfolios , 2009, IEEE Transactions on Signal Processing.

[25]  Bin Li,et al.  On-Line Portfolio Selection with Moving Average Reversion , 2012, ICML.

[26]  Frans M. J. Willems,et al.  The context-tree weighting method: basic properties , 1995, IEEE Trans. Inf. Theory.

[27]  Steven C. H. Hoi,et al.  Online portfolio selection: A survey , 2012, CSUR.

[28]  Bin Li,et al.  CORN: Correlation-driven nonparametric learning approach for portfolio selection , 2011, TIST.

[29]  Jennifer Wortman Vaughan,et al.  Risk-Sensitive Online Learning , 2006, ALT.

[30]  Bin Li,et al.  OLPS: A Toolbox for On-Line Portfolio Selection , 2016, J. Mach. Learn. Res..

[31]  A. R. Norman,et al.  Portfolio Selection with Transaction Costs , 1990, Math. Oper. Res..

[32]  Arindam Banerjee,et al.  Online Lazy Updates for Portfolio Selection with Transaction Costs , 2013, AAAI.

[33]  Robert Pardo,et al.  Design, Testing, and Optimization of Trading Systems , 1992 .

[34]  T. Cover,et al.  Asymptotic optimality and asymptotic equipartition properties of log-optimum investment , 1988 .

[35]  Jim Euchner Design , 2014, Catalysis from A to Z.

[36]  Andrew C. Singer,et al.  Universal switching portfolios under transaction costs , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[37]  Koby Crammer,et al.  Online Passive-Aggressive Algorithms , 2003, J. Mach. Learn. Res..