Influence of processing on the flow properties of long‐chain branched polypropylene

Long-chain branched polymers have high melt strength and show strain hardening in the elongational flow. These characteristics are important quantities for certain processing procedures, but are strongly affected by thermomechanical treatment. In this study, different rheological methods and material functions in shear and elongation are applied to determine the flow behavior that is affected by certain processing procedures. For this purpose, a series of blends of linear polypropylene (L-PP) and long-chain branched polypropylene (LCB-PP) is prepared using different processing methods (mixing chamber with kneading elements, twin-screw extruder, foaming) and varying processing parameters. The decrease of dynamic moduli and of flow activation energy depends on the number of processing stresses. Equilibrium states are created by solution treatment, and in this way process-modification can be separated into reversible and irreversible parts. It is concluded that the irreversible process-modification does not reduce the density of entanglements, but tears chains. POLYM. ENG. SCI., 2017. © 2017 Society of Plastics Engineers

[1]  F. Stadler,et al.  Deriving comprehensive structural information on long-chain branched polyethylenes from analysis of thermo-rheological complexity , 2016 .

[2]  S. Jafari,et al.  A qualitative assessment of long chain branching content in LLDPE, LDPE and their blends via thermor , 2013 .

[3]  Pamela Sierra Garcia,et al.  Effect of residual contaminants and of different types of extrusion processes on the rheological properties of the post-consumer polypropylene , 2013 .

[4]  F. Stadler,et al.  Evaluation of relaxation spectra of linear, short, and long-chain branched polyethylenes , 2013, Korea-Australia Rheology Journal.

[5]  S. Ahzi,et al.  Analysis of thermomechanical reprocessing effects on polypropylene/ethylene octene copolymer blends , 2012 .

[6]  F. Stadler Detecting very low levels of long-chain branching in metallocene-catalyzed polyethylenes , 2012, Rheologica Acta.

[7]  S. Ahzi,et al.  Recycling effects on the rheological and thermomechanical properties of polypropylene-based composites , 2012 .

[8]  F. Stadler On the usefulness of rheological spectra—a critical discussion , 2012, Rheologica Acta.

[9]  Y. Rémond,et al.  Mechanical Behavior of Recycled Polypropylene Composites Under Tensile, Bending, and Creep Loading: Experimental and Modeling , 2011 .

[10]  F. Stadler,et al.  Correlations between the Characteristic Rheological Quantities and Molecular Structure of Long-Chain Branched Metallocene Catalyzed Polyethylenes , 2011 .

[11]  A. Schausberger,et al.  Recovery of shear modification of polypropylene melts , 2011 .

[12]  F. Stadler Effect of incomplete datasets on the calculation of continuous relaxation spectra from dynamic-mechanical data , 2010 .

[13]  D. Rodrigue,et al.  The Effect of Recycling on LDPE Foamability : Elongational Rheology , 2008 .

[14]  A. Gotsis,et al.  Long chain branching on linear polypropylene by solid state reactions , 2008 .

[15]  F. Stadler,et al.  Comparison of the elongational behavior of various polyolefins in uniaxial and equibiaxial flows , 2007 .

[16]  H. Münstedt,et al.  Rheological properties and foaming behavior of polypropylenes with different molecular structures , 2006 .

[17]  M. Yamaguchi Relationship between processing history and rheological properties during postprocessing annealing for anomalous polyethylene blends , 2006 .

[18]  F. Stadler,et al.  Influence of Type and Content of Various Comonomers on Long-Chain Branching of Ethene/α-Olefin Copolymers , 2006 .

[19]  H. Münstedt,et al.  Rheological behavior of blends from a linear and a long-chain branched polypropylene , 2005 .

[20]  Jae Wook Lee,et al.  Effect of long‐chain branches of polypropylene on rheological properties and foam‐extrusion performances , 2005 .

[21]  H. Münstedt,et al.  Rheological measuring techniques and their relevance for the molecular characterization of polymers , 2005 .

[22]  H. Münstedt,et al.  Long-Chain Branched Polypropylenes by Electron Beam Irradiation and Their Rheological Properties , 2004 .

[23]  H. Münstedt,et al.  Strain hardening of various polyolefins in uniaxial elongational flow , 2003 .

[24]  G. Marin,et al.  Shear Modification of Long-Chain Branched Polymers: A Theoretical Approach Using the Pom-Pom Model , 2003 .

[25]  Chul B. Park,et al.  Effect of Recycling on the Rheological Properties and Foaming Behaviors of Branched Polypropylene , 2003 .

[26]  S. Canevarolo,et al.  Effect of screw element type in degradation of polypropylene upon multiple extrusions , 2002 .

[27]  Weiguo Hu,et al.  Long Chain Branched Isotactic Polypropylene , 2002 .

[28]  H. Münstedt,et al.  Long-Chain Branching in Metallocene-Catalyzed Polyethylenes Investigated by Low Oscillatory Shear and Uniaxial Extensional Rheometry , 2002 .

[29]  C. Friedrich,et al.  Van Gurp-Palmen Plot II – classification of long chain branched polymers by their topology , 2002 .

[30]  C. Gogos,et al.  Quantitative relation between shear history and rheological properties of LDPE , 2001 .

[31]  H. Potente,et al.  Morphology of polymer blends in the melting section of co-rotating twin screw extruders , 2001 .

[32]  S. Hatzikiriakos Long chain branching and polydispersity effects on the rheological properties of polyethylenes , 2000 .

[33]  J. Dealy,et al.  Effect of Molecular Structure on the Linear Viscoelastic Behavior of Polyethylene , 2000 .

[34]  M. Rätzsch Reaction mechanism to long-chain branched PP , 1999 .

[35]  H. Münstedt,et al.  Creep recovery behavior of metallocene linear low-density polyethylenes , 1999 .

[36]  D. Acierno,et al.  Rheological and mechanical properties of recycled polypropylene , 1999 .

[37]  Shiping Zhu,et al.  Effect of long chain branching on rheological properties of metallocene polyethylene , 1999 .

[38]  T. Nguyen,et al.  Rheological properties of two polypropylenes with different molecular structure , 1999 .

[39]  J. Vlachopoulos,et al.  The effect of multiple extrusion passes during recycling of high density polyethylene , 1997 .

[40]  C. Chung,et al.  Melt rheological and thermodynamic properties of polyethylene homopolymers and poly(ethylene/α‐olefin) copolymers with respect to molecular composition and structure , 1996 .

[41]  A. Schausberger,et al.  On the time-concentration superposition of the linear viscoelastic properties of plasticized polystyrene melts using the free volume concept , 1995 .

[42]  H. Mavridis,et al.  Temperature dependence of polyolefin melt rheology , 1992 .

[43]  C. Bastiaansen,et al.  Shear modification of low-density polyethylene: its origin and its effect on the basic rheological functions of the melt , 1989 .

[44]  A. Ram,et al.  Effect of shear modification on the rheological behavior of two low-density polyethylene (LDPE) grades , 1989 .

[45]  H. Laun Orientation of macromolecules and elastic deformations in polymer melts. Influence of molecular structure on the reptation of molecules , 1987 .

[46]  W. Graessley,et al.  Thermorheological effects of long-chain branching in entangled polymer melts , 1986 .

[47]  H. Schreiber,et al.  Shear modification of low density polyethylene , 1985 .

[48]  H. Schreiber,et al.  Solution-induced changes in the properties of polyethylenes , 1985 .

[49]  H. Schreiber,et al.  Shear modification of polymers , 1983 .

[50]  W. Graessley Effect of long branches on the temperature dependence of viscoelastic properties in polymer melts , 1982 .

[51]  H. Münstedt The influence of various deformation histories on elongational properties of low density polyethylene , 1981 .

[52]  H. Laun,et al.  Elongational properties and molecular structure of polyethylene melts , 1981 .

[53]  D. Hanson Shear modification of polythene , 1969 .