Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL

[1]  Kiran C. Bobba,et al.  The genetic basis of early T-cell precursor acute lymphoblastic leukaemia , 2012, Nature.

[2]  A. Kohlmann,et al.  Prognostic relevance of RUNX1 mutations in T-cell acute lymphoblastic leukemia , 2011, Haematologica.

[3]  Markus Fischer,et al.  MarkUs: a server to navigate sequence–structure–function space , 2011, Nucleic Acids Res..

[4]  Andrea Califano,et al.  The TLX1 oncogene drives aneuploidy in T-cell transformation , 2010, Nature Medicine.

[5]  Daniel Birnbaum,et al.  Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias , 2010, BMC Cancer.

[6]  M. Kurokawa,et al.  T cell acute lymphoblastic leukemia arising from familial platelet disorder , 2010, International journal of hematology.

[7]  Mariano J. Alvarez,et al.  A human B-cell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers , 2010, Molecular systems biology.

[8]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[9]  J. Uhm,et al.  The transcriptional network for mesenchymal transformation of brain tumours , 2010 .

[10]  A. Baruchel,et al.  High frequency of RUNX1 biallelic alteration in acute myeloid leukemia secondary to familial platelet disorder. , 2009, Blood.

[11]  Andrea Califano,et al.  ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes , 2007, Proceedings of the National Academy of Sciences.

[12]  B. Leber,et al.  Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy. , 2008, Blood.

[13]  E. Raetz,et al.  Molecular pathogenesis of T-cell leukaemia and lymphoma , 2008, Nature Reviews Immunology.

[14]  Andrew P. Stubbs,et al.  The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. , 2007, Blood.

[15]  C. Auewarakul,et al.  AML1 mutation and its coexistence with different transcription factor gene families in de novo acute myeloid leukemia (AML): redundancy or synergism. , 2007, Haematologica.

[16]  Jill P. Mesirov,et al.  Comparative gene marker selection suite , 2006, Bioinform..

[17]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[18]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Adam A. Margolin,et al.  Reverse engineering of regulatory networks in human B cells , 2005, Nature Genetics.

[20]  A. Ferrando,et al.  Various types of rearrangements target TLX3 locus in T‐cell acute lymphoblastic leukemia , 2004, Genes, chromosomes & cancer.

[21]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[22]  M. Andersen,et al.  Mutations of AML1 are common in therapy-related myelodysplasia following therapy with alkylating agents and are significantly associated with deletion or loss of chromosome arm 7q and with subsequent leukemic transformation. , 2004, Blood.

[23]  Motomi Osato Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia , 2004, Oncogene.

[24]  M. Caligiuri,et al.  Prognostic importance of TLX1 (HOX11) oncogene expression in adults with T-cell acute lymphoblastic leukaemia , 2004, The Lancet.

[25]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[26]  D. Gilliland,et al.  Core-binding factors in haematopoiesis and leukaemia , 2002, Nature Reviews Cancer.

[27]  S. Rollinson,et al.  Mutations of the AML1 gene in acute myeloid leukemia of FAB types M0 and M7 , 2002, Genes, chromosomes & cancer.

[28]  E. Lander,et al.  Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. , 2002, Cancer cell.

[29]  Motomi Osato,et al.  Point Mutations of the RUNX1/AML1 Gene in Sporadic and Familial Myeloid Leukemias , 2001, International journal of hematology.

[30]  R. Heilig,et al.  A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia , 2001, Leukemia.

[31]  C. Li,et al.  Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  John M. Maris,et al.  Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia , 1999, Nature Genetics.

[33]  H. Yamasaki,et al.  Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. , 1999, Blood.

[34]  大里 元美 Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2 α B gene associated with myeloblastic leukemias , 1999 .

[35]  D. Tenen,et al.  CCAAT Enhancer-Binding Protein ( C / EBP ) and AML 1 ( CBF a 2 ) Synergistically Activate the Macrophage Colony-Stimulating Factor Receptor Promoter , 1995 .

[36]  J. Downing,et al.  AML1, the Target of Multiple Chromosomal Translocations in Human Leukemia, Is Essential for Normal Fetal Liver Hematopoiesis , 1996, Cell.

[37]  A. Look,et al.  Identification of a region which directs the monocytic activity of the colony-stimulating factor 1 (macrophage colony-stimulating factor) receptor promoter and binds PEBP2/CBF (AML1) , 1994, Molecular and cellular biology.

[38]  T. Rabbitts,et al.  HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[39]  S. Korsmeyer,et al.  Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. , 1991, Science.