A 0.55-V, 28-ppm/°C, 83-nW CMOS Sub-BGR With UltraLow Power Curvature Compensation

This paper proposes an ultralow power, high precision sub bandgap voltage reference (sub-BGR) for low-voltage self-powered devices. A novel ultralow power curvature compensation circuit is proposed to improve the temperature coefficient over a wide temperature range. A switch capacitor voltage divider with improved leakage current reduction switches is used to obtain a high accuracy and a low power. To minimize the clock feedthrough and charge injection in the switches, a clock scaling down circuit is proposed, that effectively improves the line sensitivity (LS) of the sub-BGR. The proposed sub-BGR is implemented in a 0.18-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> standard CMOS process with a total area of 0.061 mm<sup>2</sup>. After measuring 30 chips, the average power consumption is 83 nW at 0.55 V of supply at 27 °C. In the supply voltage range of 0.55 to 1 V, the LS is 0.059%/V, and the error is ±0.75% (<inline-formula> <tex-math notation="LaTeX">$3\sigma $ </tex-math></inline-formula>) after trimming.

[1]  David Blaauw,et al.  A Subthreshold Voltage Reference With Scalable Output Voltage for Low-Power IoT Systems , 2017, IEEE Journal of Solid-State Circuits.

[2]  Nobutaka Kuroki,et al.  1.2-V Supply, 100-nW, 1.09-V Bandgap and 0.7-V Supply, 52.5-nW, 0.55-V Subbandgap Reference Circuits for Nanowatt CMOS LSIs , 2013, IEEE Journal of Solid-State Circuits.

[3]  Ralf Brederlow,et al.  An Ultra Low Power Bandgap Operational at Supply From 0.75 V , 2012, IEEE Journal of Solid-State Circuits.

[4]  Zhangming Zhu,et al.  A 58-ppm/°C 40-nW BGR at Supply From 0.5 V for Energy Harvesting IoT Devices , 2017, IEEE Transactions on Circuits and Systems II: Express Briefs.

[5]  Jin Hu,et al.  A 0.45 V, Nano-Watt 0.033% Line Sensitivity MOSFET-Only Sub-Threshold Voltage Reference With no Amplifiers , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Y. Amemiya,et al.  A 300 nW, 15 ppm/$^{\circ}$C, 20 ppm/V CMOS Voltage Reference Circuit Consisting of Subthreshold MOSFETs , 2009, IEEE Journal of Solid-State Circuits.

[7]  A. Brokaw,et al.  A simple three-terminal IC bandgap reference , 1974 .

[8]  Giuseppe Palmisano,et al.  A 90-nm CMOS 5-Mbps Crystal-Less RF-Powered Transceiver for Wireless Sensor Network Nodes , 2014, IEEE Journal of Solid-State Circuits.

[9]  Wei Shu,et al.  A 5.6 ppm/°C Temperature Coefficient, 87-dB PSRR, Sub-1-V Voltage Reference in 65-nm CMOS Exploiting the Zero-Temperature-Coefficient Point , 2017, IEEE Journal of Solid-State Circuits.

[10]  Yintang Yang,et al.  A 0.45-V, 14.6-nW CMOS Subthreshold Voltage Reference With No Resistors and No BJTs , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[11]  Ze-kun Zhou,et al.  A 1.6-V 25-µ A 5-ppm/°C Curvature-Compensated Bandgap Reference , 2012, IEEE Trans. Circuits Syst. I Regul. Pap..

[12]  Byung-Do Yang 250-mV Supply Subthreshold CMOS Voltage Reference Using a Low-Voltage Comparator and a Charge-Pump Circuit , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[13]  Yintang Yang,et al.  A 19-nW 0.7-V CMOS Voltage Reference With No Amplifiers and No Clock Circuits , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[14]  Wei-Chih Chen,et al.  A Sub-1 ppm/°C Precision Bandgap Reference With Adjusted-Temperature-Curvature Compensation , 2017, IEEE Transactions on Circuits and Systems Part 1: Regular Papers.

[15]  David Blaauw,et al.  A 2.98nW bandgap voltage reference using a self-tuning low leakage sample and hold , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[16]  David D. Wentzloff,et al.  5.4 A 32nW bandgap reference voltage operational from 0.5V supply for ultra-low power systems , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[17]  Y. Tsividis Accurate analysis of temperature effects in I/SUB c/V/SUB BE/ characteristics with application to bandgap reference sources , 1980, IEEE Journal of Solid-State Circuits.

[18]  Ke-Horng Chen,et al.  A 1-V, 16.9 ppm/$^{\circ}$C, 250 nA Switched-Capacitor CMOS Voltage Reference , 2011, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[19]  Tor Sverre Lande,et al.  A Sub-$\mu{\rm W}$ Bandgap Reference Circuit With an Inherent Curvature-Compensation Property , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  Sergio Bampi,et al.  Resistorless BJT bias and curvature compensation circuit at 3.4 nW for CMOS bandgap voltage references , 2014 .

[21]  Ka Nang Leung,et al.  A 2-V 23-μA 5.3-ppm/°C curvature-compensated CMOS bandgap voltage reference , 2003, IEEE J. Solid State Circuits.

[22]  Patrick Chiang,et al.  0.56 V, –20 dBm RF-Powered, Multi-Node Wireless Body Area Network System-on-a-Chip With Harvesting-Efficiency Tracking Loop , 2014, IEEE Journal of Solid-State Circuits.

[23]  Bang-Sup Song,et al.  A precision curvature-compensated CMOS bandgap reference , 1983, 1983 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[24]  Gyudong Kim,et al.  Exponential curvature-compensated BiCMOS bandgap references , 1994, IEEE J. Solid State Circuits.

[25]  K. Sakui,et al.  A CMOS bandgap reference circuit with sub-1-V operation , 1999 .

[26]  Edgar Sánchez-Sinencio,et al.  A Highly Efficient Reconfigurable Charge Pump Energy Harvester With Wide Harvesting Range and Two-Dimensional MPPT for Internet of Things , 2016, IEEE Journal of Solid-State Circuits.

[27]  Carlos Christoffersen,et al.  Nanopower, Sub-1 V, CMOS Voltage References With Digitally-Trimmable Temperature Coefficients , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[28]  Jeongjin Roh,et al.  A 1.2-V 4.2- $\hbox{ppm}/^{\circ}\hbox{C}$ High-Order Curvature-Compensated CMOS Bandgap Reference , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.