Mixed topological semimetals driven by orbital complexity in two-dimensional ferromagnets

The concepts of Weyl fermions and topological semimetals emerging in three-dimensional momentum space are extensively explored owing to the vast variety of exotic properties that they give rise to. On the other hand, very little is known about semimetallic states emerging in two-dimensional magnetic materials, which present the foundation for both present and future information technology. Here, we demonstrate that including the magnetization direction into the topological analysis allows for a natural classification of topological semimetallic states that manifest in two-dimensional ferromagnets as a result of the interplay between spin-orbit and exchange interactions. We explore the emergence and stability of such mixed topological semimetals in realistic materials, and point out the perspectives of mixed topological states for current-induced orbital magnetism and current-induced domain wall motion. Our findings pave the way to understanding, engineering and utilizing topological semimetallic states in two-dimensional spin-orbit ferromagnets.Whether topological semimetal states can emerge in two-dimensional magnetic materials remains less understood. Here, Niu and Hanke et al. propose the concepts of mixed Weyl and nodal-line semimetallic phases by including the magnetization direction into the topological analysis in two-dimensional ferromagnets.

[1]  C. Kane,et al.  Dirac Semimetals in Two Dimensions. , 2015, Physical review letters.

[2]  Su-Yang Xu,et al.  Topological nodal-line fermions in spin-orbit metal PbTaSe2 , 2016, Nature Communications.

[3]  Z. J. Wang,et al.  Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi , 2013, Science.

[4]  Y. Liu,et al.  Type-I and type-II nodal lines coexistence in the antiferromagnetic monolayer CrAs2 , 2018, Physical Review B.

[5]  Shou-Cheng Zhang,et al.  Conversion Rules for Weyl Points and Nodal Lines in Topological Media. , 2018, Physical review letters.

[6]  J. Shim,et al.  Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal , 2018, Nature Materials.

[7]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[8]  Yan Sun,et al.  Dirac semimetal and topological phase transitions in A 3 Bi ( A = Na , K, Rb) , 2012, 1202.5636.

[9]  Orbital magnetization in crystalline solids: Multi-band insulators, Chern insulators, and metals , 2005, cond-mat/0512142.

[10]  Cheng-Cheng Liu,et al.  Discovery of two-dimensional Dirac nodal line fermions , 2016 .

[11]  Claudia Felser,et al.  Topological Materials: Weyl Semimetals , 2016, 1611.04182.

[12]  J. Henk,et al.  Magnon nodal-line semimetals and drumhead surface states in anisotropic pyrochlore ferromagnets , 2016, 1609.06131.

[13]  Cheng-Cheng Liu,et al.  Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si , 2016, Nature Communications.

[14]  Taiki Yoda,et al.  Orbital Edelstein Effect as a Condensed-Matter Analog of Solenoids. , 2017, Nano letters.

[15]  Arash A. Mostofi,et al.  An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions , 2014, Comput. Phys. Commun..

[16]  X. Dai,et al.  Topological nodal line semimetals predicted from first-principles calculations , 2017 .

[17]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[18]  Xiang Zhang,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[19]  F. Freimuth,et al.  Higher-dimensional Wannier functions of multiparameter Hamiltonians , 2015, 1503.01717.

[20]  Y. Mokrousov,et al.  Two-Dimensional Topological Crystalline Insulator and Topological Phase Transition in TlSe and TlS Monolayers. , 2015, Nano letters.

[21]  J. Neumann,et al.  Über merkwürdige diskrete Eigenwerte , 1993 .

[22]  Hai-Zhou Lu,et al.  Weyl Semimetals , 2013 .

[23]  P. Upadhyaya,et al.  Domain wall in a quantum anomalous Hall insulator as a magnetoelectric piston , 2015, 1512.05310.

[24]  R. Car,et al.  Topological Nonsymmorphic Metals from Band Inversion , 2016 .

[25]  Kenji Watanabe,et al.  Observation of spin-orbit coupling induced Weyl points and topologically protected Kondo effect in a two-electron double quantum dot , 2018, 1804.06447.

[26]  C. Kane,et al.  Dirac Line Nodes in Inversion-Symmetric Crystals. , 2015, Physical review letters.

[27]  Baigeng Wang,et al.  Time-reversal-symmetry-broken quantum spin Hall effect. , 2011, Physical review letters.

[28]  T. Jungwirth,et al.  Electric Control of Dirac Quasiparticles by Spin-Orbit Torque in an Antiferromagnet. , 2016, Physical review letters.

[29]  Y. Tokura,et al.  Quantized chiral edge conduction on domain walls of a magnetic topological insulator , 2017, Science.

[30]  M. Katsnelson,et al.  Dirac electrons and domain walls: a realization in junctions of ferromagnets and topological insulators , 2015, 1506.07668.

[31]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[32]  X. Dai,et al.  Topological Node-Line Semimetal and Dirac Semimetal State in Antiperovskite Cu3PdN. , 2015, Physical review letters.

[33]  Orbital magnetization in periodic insulators. , 2005, Physical review letters.

[34]  Quansheng Wu,et al.  Three-dimensional Dirac semimetal and quantum transport in Cd3As2 , 2013, 1305.6780.

[35]  F. Freimuth,et al.  Prototypical topological orbital ferromagnet γ-FeMn , 2016, Scientific Reports.

[36]  S. Adam,et al.  Electronic Properties of High-Quality Epitaxial Topological Dirac Semimetal Thin Films. , 2016, Nano letters.

[37]  J. D. Preez,et al.  Some complexes of oxovanadium(IV) , 1967 .

[38]  L. Balents,et al.  Topological nodal semimetals , 2011, 1110.1089.

[39]  Su-Yang Xu,et al.  A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class , 2015, Nature Communications.

[40]  Dai Ying,et al.  Robust dual topological character with spin-valley polarization in a monolayer of the Dirac semimetal Na3Bi , 2017 .

[41]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[42]  Kenji Watanabe,et al.  Observation of spin–orbit coupling induced Weyl points in a two-electron double quantum dot , 2019, Communications Physics.

[43]  Y. Ando,et al.  Topological Crystalline Insulators and Topological Superconductors: From Concepts to Materials , 2015, 1501.00531.

[44]  M. Gilbert,et al.  Large-Chern-number quantum anomalous Hall effect in thin-film topological crystalline insulators. , 2013, Physical review letters.

[45]  Arash A. Mostofi,et al.  A ug 2 00 7 wannier 90 : A Tool for Obtaining Maximally-Localised Wannier Functions , 2007 .

[46]  Y. Tokura,et al.  Topological quantum phase transition in magnetic topological insulator upon magnetization rotation , 2018, Physical Review B.

[47]  Berry phase correction to electron density of states in solids. , 2005, cond-mat/0502340.

[48]  Q. Xue,et al.  Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator , 2013, Science.

[49]  J. Henk,et al.  Tunable Magnon Weyl Points in Ferromagnetic Pyrochlores. , 2016, Physical review letters.

[50]  E. J. Mele,et al.  Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.

[51]  J. E. Moore,et al.  Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals , 2016, Nature Physics.

[52]  Kang L. Wang,et al.  Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. , 2014, Nature materials.

[53]  F. Freimuth,et al.  Mixed Weyl semimetals and low-dissipation magnetization control in insulators by spin–orbit torques , 2017, Nature Communications.

[54]  S. Heinze,et al.  Maximally localized Wannier functions within the FLAPW formalism , 2008, 0806.3213.

[55]  F. Freimuth,et al.  Engineering chiral and topological orbital magnetism of domain walls and skyrmions , 2018, Communications Physics.

[56]  Leon Balents,et al.  Weyl semimetal in a topological insulator multilayer. , 2011, Physical review letters.

[57]  Yize Jin,et al.  Topological insulators , 2014, Topology in Condensed Matter.

[58]  H. Kee,et al.  Topological crystalline metal in orthorhombic perovskite iridates , 2014, Nature Communications.

[59]  Wei Zhang,et al.  Quantized Anomalous Hall Effect in Magnetic Topological Insulators , 2010, Science.

[60]  D. Loss,et al.  Thin-film magnetization dynamics on the surface of a topological insulator. , 2011, Physical review letters.

[61]  Jing Wang Antiferromagnetic Dirac semimetals in two dimensions , 2016, 1609.03259.

[62]  Wen Hong Quantized anomalous Hall effect in magnetic topological insulators , 2010 .

[63]  Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2 , 2015, Nature.

[64]  Christian P. Crisostomo,et al.  Robust Large Gap Two-Dimensional Topological Insulators in Hydrogenated III-V Buckled Honeycombs. , 2015, Nano letters.

[65]  X. Dai,et al.  Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs , 2015, 1503.01304.

[66]  Q. Gibson,et al.  Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. , 2014, Nature materials.

[67]  S. Young,et al.  Filling-Enforced Magnetic Dirac Semimetals in Two Dimensions. , 2016, Physical review letters.

[68]  G. Vignale,et al.  Quantum theory of orbital magnetization and its generalization to interacting systems. , 2007, Physical review letters.

[69]  F. Freimuth,et al.  Direct and inverse spin-orbit torques , 2014, 1406.3866.

[70]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[71]  Taiki Yoda,et al.  Current-induced Orbital and Spin Magnetizations in Crystals with Helical Structure , 2015, Scientific Reports.

[72]  A. Vishwanath,et al.  Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2010, 1007.0016.

[73]  C. Kane,et al.  Dirac semimetal in three dimensions. , 2011, Physical Review Letters.

[74]  X. Dai,et al.  Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides , 2014, 1501.00060.

[75]  F. Freimuth,et al.  Asymmetric band gaps in a Rashba film system , 2016 .

[76]  Jingzhao Zhang,et al.  Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.

[77]  H. Seifert,et al.  Beiträge zur Chemie und Struktur von Vanadylhalogeniden , 1981 .

[78]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[79]  Xi Dai,et al.  Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. , 2011, Physical review letters.

[80]  Gang Xu,et al.  Dirac fermions in an antiferromagnetic semimetal , 2016, Nature Physics.

[81]  Cheng-Cheng Liu,et al.  Magnetization-direction tunable nodal-line and Weyl phases , 2018, Physical Review B.

[82]  Y. Mokrousov,et al.  Two-dimensional topological nodal line semimetal in layered X 2 Y ( X = Ca , Sr, and Ba; Y = As , Sb, and Bi) , 2017, 1702.04634.