Calreticulin and cancer

[1]  L. Galluzzi,et al.  Ca2+ Fluxes and Cancer. , 2020, Molecular cell.

[2]  T. Lüscher,et al.  Therapeutic Implications , 2020, The Endothelium: Modulator of Cardiovascular Function.

[3]  B. Isakson,et al.  Endothelial calreticulin deletion impairs endothelial function in aged mice. , 2020, American journal of physiology. Heart and circulatory physiology.

[4]  F. Marincola,et al.  Consensus guidelines for the definition, detection and interpretation of immunogenic cell death , 2020, Journal for ImmunoTherapy of Cancer.

[5]  J. Gribben,et al.  Bone marrow niches in haematological malignancies , 2020, Nature Reviews Cancer.

[6]  M. Bandyopadhyay,et al.  Regulatory B cells in infection, inflammation, and autoimmunity. , 2020, Cellular immunology.

[7]  J. Wargo,et al.  B cells are associated with survival and immunotherapy response in sarcoma , 2020, Nature.

[8]  L. Galluzzi,et al.  PT-112 induces immunogenic cell death and synergizes with immune checkpoint blockers in mouse tumor models , 2020, Oncoimmunology.

[9]  G. Hobbs,et al.  Mutant calreticulin in myeloproliferative neoplasms. , 2019, Blood.

[10]  C. Bachert,et al.  Immunogenic cell death induced by a new photodynamic therapy based on photosens and photodithazine , 2019, Journal of Immunotherapy for Cancer.

[11]  Dajun Yang,et al.  MDM2 inhibitor APG-115 synergizes with PD-1 blockade through enhancing antitumor immunity in the tumor microenvironment , 2019, Journal of Immunotherapy for Cancer.

[12]  C. López-Otín,et al.  Immunosuppression by Mutated Calreticulin Released from Malignant Cells. , 2019, Molecular cell.

[13]  L. Galluzzi,et al.  Calreticulin exposure correlates with robust adaptive antitumor immunity and favorable prognosis in ovarian carcinoma patients , 2019, Journal of Immunotherapy for Cancer.

[14]  M. Cazzola,et al.  Defective interaction of mutant calreticulin and SOCE in megakaryocytes from patients withmyeloproliferative neoplasms. , 2019, Blood.

[15]  L. Galluzzi,et al.  Calreticulin arms NK cells against leukemia , 2019, Oncoimmunology.

[16]  S. Amadori,et al.  Chemotherapy-Induced Tumor Cell Death at the Crossroads Between Immunogenicity and Immunotolerance: Focus on Acute Myeloid Leukemia , 2019, Front. Oncol..

[17]  L. Galluzzi,et al.  Calreticulin exposure on malignant blasts correlates with improved natural killer cell-mediated cytotoxicity in acute myeloid leukemia patients , 2019, Haematologica.

[18]  M. Shaul,et al.  Tumour-associated neutrophils in patients with cancer , 2019, Nature Reviews Clinical Oncology.

[19]  Betty Y. S. Kim,et al.  Phagocytosis checkpoints as new targets for cancer immunotherapy , 2019, Nature Reviews Cancer.

[20]  P. Beaune,et al.  Immunogenic cell death in a combined synergic gene- and immune-therapy against cancer , 2019, Oncoimmunology.

[21]  L. Galluzzi,et al.  Pharmacological modulation of nucleic acid sensors — therapeutic potential and persisting obstacles , 2019, Nature Reviews Drug Discovery.

[22]  I. Melero,et al.  Dendritic cells in cancer immunology and immunotherapy , 2019, Nature Reviews Immunology.

[23]  L. Galluzzi,et al.  Apoptotic caspases inhibit abscopal responses to radiation and identify a new prognostic biomarker for breast cancer patients , 2019, Oncoimmunology.

[24]  L. Galluzzi,et al.  Apoptotic caspases cut down the immunogenicity of radiation , 2019, Oncoimmunology.

[25]  Hong-Wei Sun,et al.  Macrophages induce CD47 upregulation via IL-6 and correlate with poor survival in hepatocellular carcinoma patients , 2019, Oncoimmunology.

[26]  L. Galluzzi,et al.  Extracorporeal photochemotherapy induces bona fide immunogenic cell death , 2019, Cell Death & Disease.

[27]  Jingqing Yang,et al.  Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death , 2019, Nature Communications.

[28]  R. Zini,et al.  Calreticulin Ins5 and Del52 mutations impair unfolded protein and oxidative stress responses in K562 cells expressing CALR mutants , 2019, Scientific Reports.

[29]  B. Győrffy,et al.  Expression of MHC class I, HLA-A and HLA-B identifies immune-activated breast tumors with favorable outcome , 2019, Oncoimmunology.

[30]  L. Galluzzi,et al.  Macrophages and Metabolism in the Tumor Microenvironment. , 2019, Cell metabolism.

[31]  D. Vertommen,et al.  Calreticulin mutants as oncogenic rogue chaperones for TpoR and traffic-defective pathogenic TpoR mutants. , 2019, Blood.

[32]  D. Green,et al.  Autophagy-Independent Functions of the Autophagy Machinery , 2019, Cell.

[33]  Melissa J. Davis,et al.  A Gene Signature Predicting Natural Killer Cell Infiltration and Improved Survival in Melanoma Patients , 2019, Cancer Immunology Research.

[34]  L. Galluzzi,et al.  Mutational and Antigenic Landscape in Tumor Progression and Cancer Immunotherapy. , 2019, Trends in cell biology.

[35]  L. Zitvogel,et al.  Tumor lysis with LTX-401 creates anticancer immunity , 2019, Oncoimmunology.

[36]  B. Clotet,et al.  Combined assessment of peritumoral Th1/Th2 polarization and peripheral immunity as a new biomarker in the prediction of BCG response in patients with high-risk NMIBC , 2019, Oncoimmunology.

[37]  S. Rabkin,et al.  Oncolytic virus immunotherapy induces immunogenic cell death and overcomes STING deficiency in melanoma , 2019, Oncoimmunology.

[38]  M. Smyth,et al.  The role of NK cells and CD39 in the immunological control of tumor metastases , 2019, Oncoimmunology.

[39]  A. Flisser,et al.  Calreticulin in phagocytosis and cancer: opposite roles in immune response outcomes , 2019, Apoptosis.

[40]  M. Bulyk,et al.  The multiple mechanisms that regulate p53 activity and cell fate , 2019, Nature Reviews Molecular Cell Biology.

[41]  K. Mossman,et al.  Oncolytic viruses: how “lytic” must they be for therapeutic efficacy? , 2019, Oncoimmunology.

[42]  Yusuke Nakamura,et al.  Identification of neoantigen-specific T cells and their targets: implications for immunotherapy of head and neck squamous cell carcinoma , 2019, Oncoimmunology.

[43]  E. Pronier,et al.  Unfolding the Role of Calreticulin in Myeloproliferative Neoplasm Pathogenesis , 2019, Clinical Cancer Research.

[44]  Lixin Yang,et al.  MIPSS70+ v2.0 predicts long-term survival in myelofibrosis after allogeneic HCT with the Flu/Mel conditioning regimen. , 2019, Blood advances.

[45]  L. Zitvogel,et al.  Anticancer effects of anti-CD47 immunotherapy in vivo , 2018, Oncoimmunology.

[46]  J. Lancet,et al.  Genetically inspired prognostic scoring system (GIPSS) outperforms dynamic international prognostic scoring system (DIPSS) in myelofibrosis patients , 2018, American journal of hematology.

[47]  E. Pronier,et al.  Targeting the CALR interactome in myeloproliferative neoplasms. , 2018, JCI insight.

[48]  Xiaolong Liu,et al.  Genomic and transcriptional Profiling of tumor infiltrated CD8+ T cells revealed functional heterogeneity of antitumor immunity in hepatocellular carcinoma , 2018, Oncoimmunology.

[49]  K. Schmetterer,et al.  Immunological differences between colorectal cancer and normal mucosa uncover a prognostically relevant immune cell profile , 2018, Oncoimmunology.

[50]  J. Pollard,et al.  Targeting macrophages: therapeutic approaches in cancer , 2018, Nature Reviews Drug Discovery.

[51]  L. Zitvogel,et al.  Oncolysis with DTT-205 and DTT-304 generates immunological memory in cured animals , 2018, Cell Death & Disease.

[52]  C. Borg,et al.  Circulating NKp46+ Natural Killer cells have a potential regulatory property and predict distinct survival in Non-Small Cell Lung Cancer , 2018, Oncoimmunology.

[53]  L. Galluzzi,et al.  Linking cellular stress responses to systemic homeostasis , 2018, Nature Reviews Molecular Cell Biology.

[54]  R. Latagliata,et al.  Differences in presenting features, outcome and prognostic models in patients with primary myelofibrosis and post-polycythemia vera and/or post-essential thrombocythemia myelofibrosis treated with ruxolitinib. New perspective of the MYSEC-PM in a large multicenter study⁎. , 2018, Seminars in hematology.

[55]  Timothy A. Chan,et al.  The hallmarks of successful anticancer immunotherapy , 2018, Science Translational Medicine.

[56]  É. Vivier,et al.  Natural killer cells and other innate lymphoid cells in cancer , 2018, Nature Reviews Immunology.

[57]  L. Zitvogel,et al.  Trial watch: Peptide-based vaccines in anticancer therapy , 2018, Oncoimmunology.

[58]  L. Zitvogel,et al.  Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors , 2018, Oncoimmunology.

[59]  J. Borst,et al.  CD4+ T cell help in cancer immunology and immunotherapy , 2018, Nature Reviews Immunology.

[60]  O. Kepp,et al.  Photodynamic therapy with redaporfin targets the endoplasmic reticulum and Golgi apparatus , 2018, The EMBO journal.

[61]  P. Cresswell,et al.  Tumor-associated calreticulin variants functionally compromise the peptide loading complex and impair its recruitment of MHC-I , 2018, The Journal of Biological Chemistry.

[62]  S. Nagata Apoptosis and Clearance of Apoptotic Cells. , 2018, Annual review of immunology.

[63]  L. Galluzzi,et al.  The autophagic network and cancer , 2018, Nature Cell Biology.

[64]  E. Chen,et al.  Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN. , 2018, Blood.

[65]  I. Svane,et al.  The calreticulin (CALR) exon 9 mutations are promising targets for cancer immune therapy , 2018, Leukemia.

[66]  S. Lipton,et al.  Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018 , 2018, Cell Death & Differentiation.

[67]  Catherine J. Wu,et al.  Towards personalized, tumour-specific, therapeutic vaccines for cancer , 2017, Nature Reviews Immunology.

[68]  G. Ghanem,et al.  PRIMA-1 and PRIMA-1Met (APR-246): From Mutant/Wild Type p53 Reactivation to Unexpected Mechanisms Underlying Their Potent Anti-Tumor Effect in Combinatorial Therapies , 2017, Cancers.

[69]  R. Tampé,et al.  Structure of the human MHC-I peptide-loading complex , 2017, Nature.

[70]  C. Hetz,et al.  The Unfolded Protein Response and Cell Fate Control. , 2017, Molecular cell.

[71]  M. Dong,et al.  Calreticulin promotes EGF-induced EMT in pancreatic cancer cells via Integrin/EGFR-ERK/MAPK signaling pathway , 2017, Cell Death and Disease.

[72]  L. Galluzzi,et al.  Control of Metastasis by NK Cells. , 2017, Cancer cell.

[73]  Laurence Zitvogel,et al.  The immune contexture in cancer prognosis and treatment , 2017, Nature Reviews Clinical Oncology.

[74]  Mengyu Wang,et al.  Oncolytic peptide LTX-315 induces an immune-mediated abscopal effect in a rat sarcoma model , 2017, Oncoimmunology.

[75]  Lorenzo Galluzzi,et al.  Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles , 2017, Nature Reviews Drug Discovery.

[76]  L. Galluzzi,et al.  DNA Damage in Stem Cells. , 2017, Molecular cell.

[77]  E. Jaffee,et al.  Targeting neoantigens to augment antitumour immunity , 2017, Nature Reviews Cancer.

[78]  J. Kline,et al.  Calreticulin promotes immunity and type I interferon-dependent survival in mice with acute myeloid leukemia , 2017, Oncoimmunology.

[79]  L. Galluzzi,et al.  Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients. , 2016, Blood.

[80]  K. Nagata,et al.  Calreticulin mutant mice develop essential thrombocythemia that is ameliorated by the JAK inhibitor ruxolitinib , 2016, Leukemia.

[81]  K. Odunsi,et al.  The CD47 "don't eat me signal" is highly expressed in human ovarian cancer. , 2016, Gynecologic Oncology.

[82]  M. Oka,et al.  Calreticulin is highly expressed in pancreatic cancer stem‐like cells , 2016, Cancer science.

[83]  L. Zitvogel,et al.  Immunogenic cell death in cancer and infectious disease , 2016, Nature Reviews Immunology.

[84]  U. McDermott,et al.  A novel signalling screen demonstrates that CALR mutations activate essential MAPK signalling and facilitate megakaryocyte differentiation , 2016, Leukemia.

[85]  Mila Ljujic,et al.  The integrated stress response , 2016, EMBO reports.

[86]  Yuan-Yeh Kuo,et al.  Expression of CALR mutants causes mpl-dependent thrombocytosis in zebrafish , 2016, Blood Cancer Journal.

[87]  H. Hasselbalch,et al.  The CALR exon 9 mutations are shared neoantigens in patients with CALR mutant chronic myeloproliferative neoplasms , 2016, Leukemia.

[88]  T. Brümmendorf,et al.  Calreticulin-mutant proteins induce megakaryocytic signaling to transform hematopoietic cells and undergo accelerated degradation and Golgi-mediated secretion , 2016, Journal of Hematology & Oncology.

[89]  M. Vetizou,et al.  The oncolytic peptide LTX-315 overcomes resistance of cancers to immunotherapy with CTLA4 checkpoint blockade , 2016, Cell Death and Differentiation.

[90]  G. Kroemer,et al.  Calreticulin Expression in Human Non-Small Cell Lung Cancers Correlates with Increased Accumulation of Antitumor Immune Cells and Favorable Prognosis. , 2016, Cancer research.

[91]  F. Al-Shahrour,et al.  Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation. , 2016, Cancer discovery.

[92]  C. Pecquet,et al.  Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. , 2016, Blood.

[93]  N. Komatsu,et al.  Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. , 2016, Blood.

[94]  C. Pecquet,et al.  Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. , 2016, Blood.

[95]  A. Terzic,et al.  Calreticulin secures calcium-dependent nuclear pore competency required for cardiogenesis. , 2016, Journal of molecular and cellular cardiology.

[96]  L. Zitvogel,et al.  The oncolytic peptide LTX-315 triggers immunogenic cell death , 2016, Cell Death and Disease.

[97]  C. Pecquet,et al.  Pathologic activation of thrombopoietin receptor and JAK2-STAT5 pathway by frameshift mutants of mouse calreticulin , 2016, Leukemia.

[98]  M. Ikawa,et al.  Calreticulin Regulates Neointima Formation and Collagen Deposition following Carotid Artery Ligation , 2016, Journal of Vascular Research.

[99]  C. Pecquet,et al.  Thrombopoietin receptor is required for the oncogenic function of CALR mutants , 2016, Leukemia.

[100]  L. Zitvogel,et al.  Trial Watch—Oncolytic viruses and cancer therapy , 2016, Oncoimmunology.

[101]  R. Fietkau,et al.  Erratum to: Primary glioblastoma multiforme tumors and recurrence: comparative analysis of the danger signals HMGB1, HSP70, and calreticulin , 2016, Strahlentherapie und Onkologie.

[102]  L. Zitvogel,et al.  Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents. , 2015, Cancer cell.

[103]  R. Fietkau,et al.  Primary glioblastoma multiforme tumors and recurrence , 2015, Strahlentherapie und Onkologie.

[104]  L. Zitvogel,et al.  Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1 , 2015, Science.

[105]  M. Cazzola,et al.  Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms , 2015, Leukemia.

[106]  Yoshitaka Fujihara,et al.  Calreticulin is required for development of the cumulus oocyte complex and female fertility , 2015, Scientific Reports.

[107]  L. Galluzzi,et al.  Prognostic and Predictive Value of DAMPs and DAMP-Associated Processes in Cancer , 2015, Front. Immunol..

[108]  P. Vandenabeele,et al.  Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal , 2015, Oncotarget.

[109]  L. Zitvogel,et al.  Type I interferons in anticancer immunity , 2015, Nature Reviews Immunology.

[110]  P. Agostinis,et al.  Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy , 2014, Oncoimmunology.

[111]  M. Delorenzi,et al.  Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy , 2014, Nature Medicine.

[112]  T. Barbui,et al.  Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. , 2014, Blood.

[113]  I. Heřmanová,et al.  High hydrostatic pressure induces immunogenic cell death in human tumor cells , 2014, International journal of cancer.

[114]  M. Heuser,et al.  Prognostic effect of calreticulin mutations in patients with myelofibrosis after allogeneic hematopoietic stem cell transplantation , 2014, Leukemia.

[115]  K. Segawa,et al.  Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure , 2014, Science.

[116]  S. Demaria,et al.  Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death , 2014, Oncoimmunology.

[117]  M. Cazzola,et al.  JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. , 2014, Blood.

[118]  P. Guglielmelli,et al.  Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. , 2014, Blood.

[119]  P. Tacnet-Delorme,et al.  Relative Contribution of C1q and Apoptotic Cell-Surface Calreticulin to Macrophage Phagocytosis , 2014, Journal of Innate Immunity.

[120]  Adriano G. Rossi,et al.  Apoptotic cell clearance: basic biology and therapeutic potential , 2014, Nature Reviews Immunology.

[121]  S. Ferrone,et al.  Abstract 632: Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing , 2014 .

[122]  G. Superti-Furga,et al.  Somatic mutations of calreticulin in myeloproliferative neoplasms. , 2013, The New England journal of medicine.

[123]  J. D. Fitzpatrick,et al.  Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. , 2013, The New England journal of medicine.

[124]  D. de Ruysscher,et al.  Inducers of immunogenic cancer cell death. , 2013, Cytokine & growth factor reviews.

[125]  H. Horvitz,et al.  Xk-Related Protein 8 and CED-8 Promote Phosphatidylserine Exposure in Apoptotic Cells , 2013, Science.

[126]  Jérôme Galon,et al.  The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. , 2013, Immunity.

[127]  F. Brandizzi,et al.  Organization of the ER–Golgi interface for membrane traffic control , 2013, Nature Reviews Molecular Cell Biology.

[128]  P. van Endert,et al.  Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. , 2013, Immunity.

[129]  L. Zitvogel,et al.  Trial Watch-Oncolytic viruses and cancer therapy. , 2016 .

[130]  Abhishek D. Garg,et al.  Immunogenic cell death and DAMPs in cancer therapy , 2012, Nature Reviews Cancer.

[131]  Ming Li,et al.  An Immunosurveillance Mechanism Controls Cancer Cell Ploidy , 2012, Science.

[132]  H. Kuwano,et al.  CD47 expression regulated by the miR-133a tumor suppressor is a novel prognostic marker in esophageal squamous cell carcinoma. , 2012, Oncology reports.

[133]  Jun Chen,et al.  Calreticulin as a potential diagnostic biomarker for lung cancer , 2012, Cancer Immunology, Immunotherapy.

[134]  P. Vandenabeele,et al.  A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death , 2012, The EMBO journal.

[135]  Abhishek D. Garg,et al.  Hypericin-based photodynamic therapy induces surface exposure of damage-associated molecular patterns like HSP70 and calreticulin , 2012, Cancer Immunology, Immunotherapy.

[136]  F. Di Virgilio,et al.  Autophagy-Dependent Anticancer Immune Responses Induced by Chemotherapeutic Agents in Mice , 2011, Science.

[137]  David B. Williams,et al.  Participation of lectin chaperones and thiol oxidoreductases in protein folding within the endoplasmic reticulum. , 2011, Current opinion in cell biology.

[138]  R. Schreiber,et al.  Cancer Immunoediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion , 2011, Science.

[139]  R. Schreiber,et al.  Natural innate and adaptive immunity to cancer. , 2011, Annual review of immunology.

[140]  P. Cresswell,et al.  Essential glycan-dependent interactions optimize MHC class I peptide loading , 2011, Proceedings of the National Academy of Sciences.

[141]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[142]  Ash A. Alizadeh,et al.  Calreticulin Is the Dominant Pro-Phagocytic Signal on Multiple Human Cancers and Is Counterbalanced by CD47 , 2010, Science Translational Medicine.

[143]  L. Zitvogel,et al.  Calreticulin exposure on malignant blasts predicts a cellular anticancer immune response in patients with acute myeloid leukemia , 2010, Cell Death and Disease.

[144]  F. Chew,et al.  Clinicopathological significance of calreticulin in breast invasive ductal carcinoma , 2010, Modern Pathology.

[145]  Y. Zeng,et al.  Expression of calreticulin is associated with infiltration of T-cells in stage IIIB colon cancer. , 2010, World journal of gastroenterology.

[146]  S. Powis,et al.  Suppression of MHC class I surface expression by calreticulin's P-domain in a calreticulin deficient cell line. , 2010, Biochimica et biophysica acta.

[147]  H. Frierson,et al.  Relationship between HLA class I antigen processing machinery component expression and the clinicopathologic characteristics of bladder carcinomas , 2010, Cancer Immunology, Immunotherapy.

[148]  J. Pignon,et al.  Immunogenic death of colon cancer cells treated with oxaliplatin , 2010, Oncogene.

[149]  M. Sweetwyne,et al.  Intracellular Calreticulin Regulates Multiple Steps in Fibrillar Collagen Expression, Trafficking, and Processing into the Extracellular Matrix* , 2009, The Journal of Biological Chemistry.

[150]  E. Jeffery,et al.  Modes of Calreticulin Recruitment to the Major Histocompatibility Complex Class I Assembly Pathway* , 2009, The Journal of Biological Chemistry.

[151]  T. Elliott,et al.  Calreticulin‐dependent recycling in the early secretory pathway mediates optimal peptide loading of MHC class I molecules , 2009, The EMBO journal.

[152]  R. Dhir,et al.  Suppressive roles of calreticulin in prostate cancer growth and metastasis. , 2009, The American journal of pathology.

[153]  Ash A. Alizadeh,et al.  CD47 Is an Adverse Prognostic Factor and Therapeutic Antibody Target on Human Acute Myeloid Leukemia Stem Cells , 2009, Cell.

[154]  D. Weber,et al.  Activation of the Unfolded Protein Response Is Associated with Favorable Prognosis in Acute Myeloid Leukemia , 2009, Clinical Cancer Research.

[155]  P. van Endert,et al.  Mechanisms of pre‐apoptotic calreticulin exposure in immunogenic cell death , 2009, The EMBO journal.

[156]  Z. Milovanović,et al.  Effects of Humoral Immunity and Calreticulin Overexpression on Postoperative Course in Breast Cancer , 2009, Pathology & Oncology Research.

[157]  M. Michalak,et al.  Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. , 2009, The Biochemical journal.

[158]  M. Ho,et al.  Identification of Calreticulin as a Prognosis Marker and Angiogenic Regulator in Human Gastric Cancer , 2009, Annals of Surgical Oncology.

[159]  B. Yeganeh,et al.  Calreticulin regulates insulin receptor expression and its downstream PI3 Kinase/Akt signalling pathway. , 2008, Biochimica et biophysica acta.

[160]  Hidde L. Ploegh,et al.  The known unknowns of antigen processing and presentation , 2008, Nature Reviews Immunology.

[161]  L. Zitvogel,et al.  The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death , 2008, Cell Death and Differentiation.

[162]  Laurence Zitvogel,et al.  Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy , 2007, Nature Medicine.

[163]  S. Jagannath,et al.  Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. , 2007, Blood.

[164]  G. Fleuren,et al.  HNPCC versus sporadic microsatellite-unstable colon cancers follow different routes toward loss of HLA class I expression , 2007, BMC Cancer.

[165]  A. Lanzavecchia,et al.  Regulation of peripheral T cell activation by calreticulin , 2006, The Journal of experimental medicine.

[166]  L. Zitvogel,et al.  Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death , 2005, The Journal of experimental medicine.

[167]  W. Janssen,et al.  Cell-Surface Calreticulin Initiates Clearance of Viable or Apoptotic Cells through trans-Activation of LRP on the Phagocyte , 2005, Cell.

[168]  D. Lai,et al.  Calreticulin expression in neuroblastoma--a novel independent prognostic factor. , 2005, Annals of oncology : official journal of the European Society for Medical Oncology.

[169]  R. Schreiber,et al.  The three Es of cancer immunoediting. , 2004, Annual review of immunology.

[170]  P. Rakic,et al.  Phosphatidylserine Receptor Is Required for Clearance of Apoptotic Cells , 2003, Science.

[171]  M. Michalak,et al.  The Anti-adhesive Activity of Thrombospondin Is Mediated by the N-terminal Domain of Cell Surface Calreticulin* , 2002, The Journal of Biological Chemistry.

[172]  R. Vile Faculty Opinions recommendation of IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. , 2001 .

[173]  V. Fadok,et al.  C1q and Mannose Binding Lectin Engagement of Cell Surface Calreticulin and Cd91 Initiates Macropinocytosis and Uptake of Apoptotic Cells , 2001, The Journal of experimental medicine.

[174]  K. Krause,et al.  Functional specialization of calreticulin domains , 2001, The Journal of cell biology.

[175]  H. Duff,et al.  Complete heart block and sudden death in mice overexpressing calreticulin. , 2001, The Journal of clinical investigation.

[176]  R. Schreiber,et al.  IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity , 2001, Nature.

[177]  H. Gresham,et al.  Cd47-Signal Regulatory Protein α (Sirpα) Regulates Fcγ and Complement Receptor–Mediated Phagocytosis , 2001, The Journal of experimental medicine.

[178]  A. Orr,et al.  Thrombospondin Mediates Focal Adhesion Disassembly through Interactions with Cell Surface Calreticulin* , 2000, The Journal of Biological Chemistry.

[179]  V. Fadok,et al.  A receptor for phosphatidylserine-specific clearance of apoptotic cells , 2000, Nature.

[180]  M. R. Leach,et al.  Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non‐glycosylated proteins , 1999, The EMBO journal.

[181]  R. Schreiber,et al.  CD4+ T cells eliminate MHC class II-negative cancer cells in vivo by indirect effects of IFN-γ , 1999 .

[182]  K. Krause,et al.  Calreticulin Is Essential for Cardiac Development , 1999, The Journal of cell biology.

[183]  R. Schreiber,et al.  Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice , 1998 .

[184]  G. R. Stuart,et al.  The C1q and collectin binding site within C1q receptor (cell surface calreticulin). , 1997, Immunopharmacology.

[185]  S. Grinstein,et al.  Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion , 1997, Nature.

[186]  P. Cresswell,et al.  Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. , 1996, Immunity.

[187]  S. Dedhar,et al.  Inducible Interaction of Integrin α2β1 with Calreticulin , 1995, The Journal of Biological Chemistry.

[188]  P. Stanfield Ins and outs , 1994, Nature.

[189]  J. D. Capra,et al.  Calreticulin is released from activated neutrophils and binds to C1q and mannan-binding protein. , 1994, Clinical immunology and immunopathology.

[190]  K. Burns,et al.  Calreticulin in T-lymphocytes. Identification of calreticulin in T-lymphocytes and demonstration that activation of T cells correlates with increased levels of calreticulin mRNA and protein. , 1992, The Journal of biological chemistry.

[191]  S. Baksh,et al.  Calreticulin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. , 1991, The Journal of biological chemistry.

[192]  M. Fellous,et al.  Preferential effect of γ interferon on the synthesis of HLA antigens and their mRNAs in human cells , 1982, Nature.

[193]  D. Dudziak,et al.  Transcriptional control of dendritic cell development and functions. , 2019, International review of cell and molecular biology.

[194]  A. Han,et al.  Cancer Immunosurveillance by T Cells. , 2019, International review of cell and molecular biology.

[195]  N. Khodarev Intracellular RNA Sensing in Mammalian Cells: Role in Stress Response and Cancer Therapies. , 2019, International review of cell and molecular biology.

[196]  J. Cubillos-Ruiz,et al.  The impact of endoplasmic reticulum stress responses in dendritic cell immunobiology. , 2019, International review of cell and molecular biology.

[197]  Jennifer L. Guerriero Macrophages: Their Untold Story in T Cell Activation and Function. , 2019, International review of cell and molecular biology.

[198]  A. Garg,et al.  Type I interferons and dendritic cells in cancer immunotherapy. , 2019, International review of cell and molecular biology.

[199]  N. Bhardwaj,et al.  Dendritic cell subsets and locations. , 2019, International review of cell and molecular biology.

[200]  J. Banchereau,et al.  Interplay between dendritic cells and cancer cells. , 2019, International review of cell and molecular biology.

[201]  J. Idoyaga,et al.  The versatile plasmacytoid dendritic cell: Function, heterogeneity, and plasticity. , 2019, International review of cell and molecular biology.

[202]  R. Hoffman,et al.  Immune Checkpoint Blockade Enhances Shared Neoantigen-Induced T Cell Immunity Directed against Mutated Calreticulin in Myeloproliferative Neoplasms. , 2019, Cancer discovery.

[203]  K. Radford,et al.  The role of dendritic cells in cancer. , 2019, International review of cell and molecular biology.

[204]  Fiorella Kotsias,et al.  Antigen processing and presentation. , 2019, International review of cell and molecular biology.

[205]  A. Mondal,et al.  Indoleamine 2,3-Dioxygenase and Its Therapeutic Inhibition in Cancer. , 2018, International review of cell and molecular biology.

[206]  Yue Zhang,et al.  Expression and significance of calreticulin in human osteosarcoma. , 2017, Cancer biomarkers : section A of Disease markers.

[207]  Sanjeeva J. Wijeyesakere,et al.  Calreticulin in the immune system: ins and outs. , 2013, Trends in immunology.

[208]  L. Zitvogel,et al.  Calreticulin exposure dictates the immunogenicity of cancer cell death , 2007, Nature Medicine.

[209]  G. Collins The next generation. , 2006, Scientific American.

[210]  T. Elliott,et al.  Assembly and antigen-presenting function of MHC class I molecules in cells lacking the ER chaperone calreticulin. , 2002, Immunity.

[211]  R. Schreiber,et al.  CD4(+) T cells eliminate MHC class II-negative cancer cells in vivo by indirect effects of IFN-gamma. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[212]  R. Schreiber,et al.  Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[213]  G. Otten Antigen processing and presentation. , 1989, Current opinion in immunology.