On a greedy 2‐matching algorithm and Hamilton cycles in random graphs with minimum degree at least three

We describe and analyse a simple greedy algorithm 2greedy that finds a good 2-matching M in the random graph G=Gn,cni¾?i¾?3 when ci¾?10. A 2-matching is a spanning subgraph of maximum degree two and G is drawn uniformly from graphs with vertex set [n], cn edges and minimum degree at least three. By good we mean that M has Ologn components. We then use this 2-matching to build a Hamilton cycle in On1.5+o1 time w.h.p. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 45, 443-497, 2014

[1]  Nicholas C. Wormald,et al.  Almost All Regular Graphs Are Hamiltonian , 1994, Random Struct. Algorithms.

[2]  C. McDiarmid Concentration , 1862, The Dental register.

[3]  Alan M. Frieze,et al.  Maximum matchings in sparse random graphs: Karp-Sipser revisited , 1998, Random Struct. Algorithms.

[4]  Tom Bohman,et al.  Hamilton cycles in 3-out , 2009 .

[5]  Béla Bollobás,et al.  On matchings and hamiltonian cycles in random graphs Annals of Discrete Mathematics 28 , 1985 .

[6]  B. Bollobás,et al.  An algorithm for finding hamilton paths and cycles in random graphs , 1987 .

[7]  B. Pittel,et al.  On a sparse random graph with minimum degree three: Likely Pósa sets are large , 2011, 1107.4944.

[8]  B. Pittel,et al.  Maximum matchings in sparse random graphs: Karp-Sipser revisited , 1998 .

[9]  M. Sipser,et al.  Maximum matching in sparse random graphs , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[10]  Béla Bollobás,et al.  Edge disjoint Hamilton cycles in sparse random graphs of minimum degree at least k , 2000 .

[11]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[12]  Alan M. Frieze,et al.  Finding hamilton cycles in sparse random graphs , 1987, J. Comb. Theory, Ser. B.

[13]  Alan M. Frieze,et al.  Perfect matchings in random graphs with prescribed minimal degree , 2003, SODA '03.

[14]  János Komlós,et al.  Limit distribution for the existence of Hamiltonian cycles in a random graph , 2006, Discret. Math..

[15]  M. Habib Probabilistic methods for algorithmic discrete mathematics , 1998 .

[16]  Boris G. Pittel,et al.  On Tree Census and the Giant Component in Sparse Random Graphs , 1990, Random Struct. Algorithms.

[17]  CheboluPrasad,et al.  Finding a maximum matching in a sparse random graph in O(n) expected time , 2010 .

[18]  Richard M. Karp,et al.  Maximum Matchings in Sparse Random Graphs , 1981, FOCS 1981.

[19]  Leslie G. Valiant,et al.  Fast probabilistic algorithms for hamiltonian circuits and matchings , 1977, STOC '77.

[20]  J. Komlos,et al.  First Occurrence of Hamilton Cycles in Random Graphs , 1985 .

[21]  Nicholas C. Wormald,et al.  Almost All Cubic Graphs Are Hamiltonian , 1992, Random Struct. Algorithms.

[22]  Vasek Chvátal,et al.  Almost All Graphs with 1.44n Edges are 3-Colorable , 1991, Random Struct. Algorithms.