Discussion of Identification, Estimation and Approximation of Risk under Interventions that Depend on the Natural Value of Treatment Using Observational Data, by Jessica Young, Miguel Hernán, and James Robins

Abstract Young, Hernán, and Robins consider the mean outcome under a dynamic intervention that may rely on the natural value of treatment. They first identify this value with a statistical target parameter, and then show that this statistical target parameter can also be identified with a causal parameter which gives the mean outcome under a stochastic intervention. The authors then describe estimation strategies for these quantities. Here we augment the authors’ insightful discussion by sharing our experiences in situations where two causal questions lead to the same statistical estimand, or the newer problem that arises in the study of data adaptive parameters, where two statistical estimands can lead to the same estimation problem. Given a statistical estimation problem, we encourage others to always use a robust estimation framework where the data generating distribution truly belongs to the statistical model. We close with a discussion of a framework which has these properties.

[1]  Mark J van der Laan,et al.  Targeted Learning of the Mean Outcome under an Optimal Dynamic Treatment Rule , 2015, Journal of causal inference.

[2]  Mark J van der Laan,et al.  Estimation of Direct Causal Effects , 2006, Epidemiology.

[3]  J. Robins,et al.  Recovery of Information and Adjustment for Dependent Censoring Using Surrogate Markers , 1992 .

[4]  T. Richardson Single World Intervention Graphs ( SWIGs ) : A Unification of the Counterfactual and Graphical Approaches to Causality , 2013 .

[5]  A. V. D. Vaart,et al.  Oracle inequalities for multi-fold cross validation , 2006 .

[6]  Nicholas P. Jewell,et al.  Direct Effects and Effect Among the Treated , 2011 .

[7]  J. Wolfson,et al.  Design and Estimation for Evaluating Principal Surrogate Markers in Vaccine Trials , 2013, Biometrics.

[8]  M. J. van der Laan Targeted Estimation of Nuisance Parameters to Obtain Valid Statistical Inference , 2014, The international journal of biostatistics.

[9]  P. Gänssler Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .

[10]  J. Mark,et al.  Statistical Inference when using Data Adaptive Estimators of Nuisance Parameters , 2012 .

[11]  M. J. van der Laan,et al.  Causal Models and Learning from Data: Integrating Causal Modeling and Statistical Estimation , 2014, Epidemiology.

[12]  Mark J van der Laan,et al.  Identification and Efficient Estimation of the Natural Direct Effect among the Untreated , 2013, Biometrics.

[13]  M. J. Laan,et al.  Targeted Learning of an Optimal Dynamic Treatment, and Statistical Inference for its Mean Outcome , 2014 .

[14]  Mark van der Laan,et al.  Population Intervention Causal Effects Based on Stochastic Interventions , 2012, Biometrics.

[15]  Uwe Siebert,et al.  Effects of multiple interventions , 2004 .

[16]  James M. Robins,et al.  Unified Methods for Censored Longitudinal Data and Causality , 2003 .

[17]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[18]  S. Dudoit,et al.  Unified Cross-Validation Methodology For Selection Among Estimators and a General Cross-Validated Adaptive Epsilon-Net Estimator: Finite Sample Oracle Inequalities and Examples , 2003 .

[19]  Aad van der Vaart,et al.  The Cross-Validated Adaptive Epsilon-Net Estimator , 2006 .

[20]  K. Do,et al.  Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .

[21]  M. J. Laan,et al.  Targeted Learning: Causal Inference for Observational and Experimental Data , 2011 .

[22]  Discussion of “Dynamic treatment regimes: Technical challenges and applications” , 2014 .

[23]  Mark J. van der Laan,et al.  Causal Mediation in a Survival Setting with Time-Dependent Mediators , 2012 .

[24]  Mark J. van der Laan,et al.  Cross-Validated Targeted Minimum-Loss-Based Estimation , 2011 .

[25]  Mark J van der Laan,et al.  Targeted Minimum Loss Based Estimator that Outperforms a given Estimator , 2012, The international journal of biostatistics.

[26]  J. Robins,et al.  Doubly Robust Estimation in Missing Data and Causal Inference Models , 2005, Biometrics.

[27]  J. Wellner,et al.  Inefficient estimators of the bivariate survival function for three models , 1995 .

[28]  J. Robins,et al.  Estimation and extrapolation of optimal treatment and testing strategies , 2008, Statistics in medicine.

[29]  M. J. van der Laan,et al.  Super-Learning of an Optimal Dynamic Treatment Rule , 2016, The international journal of biostatistics.

[30]  Alan E. Hubbard,et al.  Statistical Inference for Data Adaptive Target Parameters , 2016, The international journal of biostatistics.

[31]  M. J. van der Laan,et al.  Statistical Applications in Genetics and Molecular Biology Super Learner , 2010 .

[32]  M. J. van der Laan,et al.  The International Journal of Biostatistics Targeted Maximum Likelihood Learning , 2011 .

[33]  M. J. van der Laan,et al.  The International Journal of Biostatistics Causal Effect Models for Realistic Individualized Treatment and Intention to Treat Rules , 2011 .