Transition-metal chalcogenides (TMCs) with tunable direct bandgaps and interlayer spacing are attractive for energy-related applications. Semiconducting zinc chalcogenides, especially their selenides (ZnSe) and tellurides (ZnTe), with enhanced conductivity, high theoretical capacity, low operation voltage and abundance, have appeared on the horizon and receive increasing interest in terms of electrochemical energy storage and conversion. Despite the existing typical obstruction owing to the large volume change, relatively low electrical conductivity and sluggish ion diffusion kinetics into the bulk phase, several effective strategies such as compositing, doping, nanostructuring, and electrode/cell design have exhibited promising applications. We herein provide a timely and systematic overview of recent research and significant advances regarding ZnSe, ZnTe and their hybrids/composites, covering synthesis to electrode design and to applications, especially in advanced Li/Na/K-ion batteries, as well as the reaction mechanisms thereof. It is hoped that the overview will shed new light on the development of ZnSe and ZnTe for next-generation rechargeable batteries.