Cell-surface anchoring of Listeria adhesion protein on L. monocytogenes is fastened by internalin B for pathogenesis.

[1]  Olivier Disson,et al.  Bacterial inhibition of Fas-mediated killing promotes neuroinvasion and persistence , 2022, Nature.

[2]  X. Ye Purification and Handling of the Chaperonin GroEL. , 2021, Methods in molecular biology.

[3]  A. Bhunia,et al.  Biofilm-isolated Listeria monocytogenes exhibits reduced systemic dissemination at the early (12–24 h) stage of infection in a mouse model , 2021, npj Biofilms and Microbiomes.

[4]  A. Bhunia,et al.  Listeria adhesion protein-expressing bioengineered probiotics prevent fetoplacental transmission of Listeria monocytogenes in a pregnant Guinea pig model. , 2021, Microbial pathogenesis.

[5]  J. Quereda,et al.  Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology , 2021, Virulence.

[6]  A. Bhunia,et al.  Receptor-targeted engineered probiotics mitigate lethal Listeria infection , 2020, Nature Communications.

[7]  S. Dübel,et al.  Pyruvate dehydrogenase complex—enzyme 2, a new target for Listeria spp. detection identified using combined phage display technologies , 2020, Scientific Reports.

[8]  Y. Shah,et al.  Oxygen battle in the gut: Hypoxia and hypoxia-inducible factors in metabolic and inflammatory responses in the intestine , 2020, The Journal of Biological Chemistry.

[9]  M. Loessner,et al.  Galactosylated wall teichoic acid, but not lipoteichoic acid, retains InlB on the surface of serovar 4b Listeria monocytogenes , 2020, Molecular microbiology.

[10]  R. Tierney,et al.  Human antibodies neutralizing diphtheria toxin in vitro and in vivo , 2020, Scientific Reports.

[11]  Ji-Joon Song,et al.  Aldehyde-alcohol dehydrogenase forms a high-order spirosome architecture critical for its activity , 2019, Nature Communications.

[12]  Nicole M. Gaudelli,et al.  Structure of a bound peptide phosphonate reveals the mechanism of nocardicin bifunctional thioesterase epimerase-hydrolase half-reactions , 2019, Nature Communications.

[13]  M. Braunstein,et al.  The Two Distinct Types of SecA2-Dependent Export Systems , 2019, Microbiology spectrum.

[14]  A. Bhunia,et al.  Crossing the Intestinal Barrier via Listeria Adhesion Protein and Internalin A. , 2019, Trends in microbiology.

[15]  F. Götz,et al.  Bacterial Excretion of Cytoplasmic Proteins (ECP): Occurrence, Mechanism, and Function. , 2019, Trends in microbiology.

[16]  P. Cossart,et al.  Reassessing the role of internalin B in Listeria monocytogenes virulence using the epidemic strain F2365 , 2019, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[17]  A. Bhunia,et al.  Tunicamycin Mediated Inhibition of Wall Teichoic Acid Affects Staphylococcus aureus and Listeria monocytogenes Cell Morphology, Biofilm Formation and Virulence , 2018, Front. Microbiol..

[18]  A. Bhunia,et al.  Listeria Adhesion Protein Induces Intestinal Epithelial Barrier Dysfunction for Bacterial Translocation. , 2018, Cell host & microbe.

[19]  B. Garcia,et al.  Microbes vs. chemistry in the origin of the anaerobic gut lumen , 2018, Proceedings of the National Academy of Sciences.

[20]  J. Eble Titration ELISA as a Method to Determine the Dissociation Constant of Receptor Ligand Interaction. , 2018, Journal of visualized experiments : JoVE.

[21]  Jiahui Chen,et al.  Improvements to the APBS biomolecular solvation software suite , 2017, Protein science : a publication of the Protein Society.

[22]  M. Hust,et al.  Parallelized Antibody Selection in Microtiter Plates. , 2018, Methods in molecular biology.

[23]  A. Bhunia,et al.  Genome Sequence of Listeria monocytogenes Strain F4244, a 4b Serotype , 2017, Genome Announcements.

[24]  Dawei Zhang,et al.  Multimer recognition and secretion by the non-classical secretion pathway in Bacillus subtilis , 2017, Scientific Reports.

[25]  Dima Kozakov,et al.  The ClusPro web server for protein–protein docking , 2017, Nature Protocols.

[26]  Torsten Schwede,et al.  The SWISS-MODEL Repository—new features and functionality , 2016, Nucleic Acids Res..

[27]  S. Karamanou,et al.  Protein export through the bacterial Sec pathway , 2016, Nature Reviews Microbiology.

[28]  J. Quereda,et al.  Listeria monocytogenes remodels the cell surface in the blood-stage. , 2016, Environmental microbiology reports.

[29]  A. Bhunia,et al.  Fructose 1,6-Bisphosphate Aldolase, a Novel Immunogenic Surface Protein on Listeria Species , 2016, PloS one.

[30]  Eduardo P C Rocha,et al.  Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity , 2016, Nature Genetics.

[31]  A. Karsi,et al.  A novel suicide plasmid for efficient gene mutation in Listeria monocytogenes. , 2015, Plasmid.

[32]  S. Dübel,et al.  Generation and analysis of the improved human HAL9/10 antibody phage display libraries , 2015, BMC Biotechnology.

[33]  P. Cossart,et al.  PI3-kinase activation is critical for host barrier permissiveness to Listeria monocytogenes , 2015, The Journal of experimental medicine.

[34]  Haipeng Liu,et al.  MoonProt: a database for proteins that are known to moonlight , 2013, Nucleic Acids Res..

[35]  Tor Lea,et al.  Caco-2 Cell Line , 2015 .

[36]  J. Karkowska-Kuleta,et al.  Moonlighting proteins as virulence factors of pathogenic fungi, parasitic protozoa and multicellular parasites. , 2014, Molecular oral microbiology.

[37]  B. Bensing,et al.  Selective transport by SecA2: an expanding family of customized motor proteins. , 2014, Biochimica et biophysica acta.

[38]  A. Bhunia,et al.  Pathogen-specific antigen target for production of antibodies produced by comparative genomics , 2014 .

[39]  C. Hill,et al.  Generation of nonpolar deletion mutants in Listeria monocytogenes using the "SOEing" method. , 2014, Methods in molecular biology.

[40]  Olivier Disson,et al.  In vitro and in vivo models to study human listeriosis: mind the gap. , 2013, Microbes and infection.

[41]  K. Büssow,et al.  High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells , 2013, BMC Biotechnology.

[42]  Arun K Bhunia,et al.  Secreted Listeria adhesion protein (Lap) influences Lap-mediated Listeria monocytogenes paracellular translocation through epithelial barrier , 2013, Gut Pathogens.

[43]  N. Seidler Basic biology of GAPDH. , 2013, Advances in experimental medicine and biology.

[44]  A. Bhunia,et al.  Highly specific fiber optic immunosensor coupled with immunomagnetic separation for detection of low levels of Listeria monocytogenes and L. ivanovii , 2012, BMC Microbiology.

[45]  Shinji Yamazaki,et al.  Sensitivity of Selected Human Tumor Models to PF-04217903, a Novel Selective c-Met Kinase Inhibitor , 2012, Molecular Cancer Therapeutics.

[46]  A. Bhunia,et al.  Genetic organization and molecular characterization of secA2 locus in Listeria species. , 2011, Gene.

[47]  P. Cossart Illuminating the landscape of host–pathogen interactions with the bacterium Listeria monocytogenes , 2011, Proceedings of the National Academy of Sciences.

[48]  Daisuke Kihara,et al.  N-Terminal Gly224–Gly411 Domain in Listeria Adhesion Protein Interacts with Host Receptor Hsp60 , 2011, PloS one.

[49]  S. Koyasu,et al.  Listerial invasion protein internalin B promotes entry into ileal Peyer's patches in vivo , 2011, Microbiology and immunology.

[50]  Arun K. Bhunia,et al.  Listeria monocytogenes Uses Listeria Adhesion Protein (LAP) To Promote Bacterial Transepithelial Translocation and Induces Expression of LAP Receptor Hsp60 , 2010, Infection and Immunity.

[51]  Arun K. Bhunia,et al.  LAP, an alcohol acetaldehyde dehydrogenase enzyme in Listeria, promotes bacterial adhesion to enterocyte-like Caco-2 cells only in pathogenic species. , 2010, Microbiology.

[52]  J. Kumaran,et al.  Listeria monocytogenes Internalin B Activates Junctional Endocytosis to Accelerate Intestinal Invasion , 2010, PLoS pathogens.

[53]  C. Abril,et al.  Neuropathogenesis of Naturally Occurring Encephalitis Caused by Listeria monocytogenes in Ruminants , 2010, Brain pathology.

[54]  P. Cossart,et al.  Listeria monocytogenes internalin and E-cadherin: from bench to bedside. , 2009, Cold Spring Harbor perspectives in biology.

[55]  A. Bhunia,et al.  Expression of LAP, a SecA2-dependent secretory protein, is induced under anaerobic environment. , 2009, Microbes and infection.

[56]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[57]  Gerhard Hummer,et al.  Replica exchange simulations of transient encounter complexes in protein–protein association , 2008, Proceedings of the National Academy of Sciences.

[58]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[59]  J. Vandekerckhove,et al.  Characterization of a Listeria monocytogenes Protein Interfering with Rab5a , 2008, Traffic.

[60]  A. Bhunia,et al.  Differential expression of InlB and ActA in Listeria monocytogenes in selective and nonselective enrichment broths , 2008, Journal of applied microbiology.

[61]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[62]  P. Cossart,et al.  Listeria monocytogenes Surface Proteins: from Genome Predictions to Function , 2007, Microbiology and Molecular Biology Reviews.

[63]  D. Alland,et al.  A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. , 2007, Journal of microbiological methods.

[64]  M. Wiedmann,et al.  Listeria monocytogenes F2365 carries several authentic mutations potentially leading to truncated gene products, including inlB, and demonstrates atypical phenotypic characteristics. , 2007, Journal of food protection.

[65]  A. Bhunia,et al.  The 2-Cys Peroxiredoxin-Deficient Listeria monocytogenes Displays Impaired Growth and Survival in the Presence of Hydrogen Peroxide In Vitro But Not in Mouse Organs , 2007, Current Microbiology.

[66]  P. Cossart,et al.  Control of Listeria Superoxide Dismutase by Phosphorylation* , 2006, Journal of Biological Chemistry.

[67]  Arun K Bhunia,et al.  Adhesion characteristics of Listeria adhesion protein (LAP)-expressing Escherichia coli to Caco-2 cells and of recombinant LAP to eukaryotic receptor Hsp60 as examined in a surface plasmon resonance sensor. , 2006, FEMS microbiology letters.

[68]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[69]  D. J. Naylor,et al.  Proteome-wide Analysis of Chaperonin-Dependent Protein Folding in Escherichia coli , 2005, Cell.

[70]  E. Dietrichs,et al.  Brain stem encephalitis in listeriosis , 2005, Scandinavian journal of infectious diseases.

[71]  F. Fiedler Biochemistry of the cell surface of Listeria strains: A locating general view , 2005, Infection.

[72]  J. Wehland,et al.  The cell wall subproteome of Listeria monocytogenes , 2004, Proteomics.

[73]  Arun K. Bhunia,et al.  Detection of Low Levels of Listeria monocytogenes Cells by Using a Fiber-Optic Immunosensor , 2004, Applied and Environmental Microbiology.

[74]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[75]  Nathan A. Baker,et al.  PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations , 2004, Nucleic Acids Res..

[76]  David A Rasko,et al.  Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. , 2004, Nucleic acids research.

[77]  P. Cossart,et al.  Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence , 2004, Molecular microbiology.

[78]  A. Bhunia,et al.  Heat Shock Protein 60 Acts as a Receptor for the Listeria Adhesion Protein in Caco-2 Cells , 2004, Infection and Immunity.

[79]  Matthias Müller,et al.  Export of β-Lactamase Is Independent of the Signal Recognition Particle* , 2003, Journal of Biological Chemistry.

[80]  A. Bhunia,et al.  Adhesion, Invasion, and Translocation Characteristics of Listeria monocytogenes Serotypes in Caco-2 Cell and Mouse Models , 2003, Applied and Environmental Microbiology.

[81]  G. S. Chhatwal,et al.  Housekeeping enzymes as virulence factors for pathogens. , 2003, International journal of medical microbiology : IJMM.

[82]  A. Bhunia,et al.  A Listeria adhesion protein-deficient Listeria monocytogenes strain shows reduced adhesion primarily to intestinal cell lines , 2003, Medical Microbiology and Immunology.

[83]  Pascale Cossart,et al.  GW domains of the Listeria monocytogenes invasion protein InlB are SH3‐like and mediate binding to host ligands , 2002, The EMBO journal.

[84]  A. Bhunia,et al.  Glucose and Nutrient Concentrations Affect the Expression of a 104-Kilodalton Listeria Adhesion Protein in Listeria monocytogenes , 2002, Applied and Environmental Microbiology.

[85]  Ruth Nussinov,et al.  Close‐Range Electrostatic Interactions in Proteins , 2002, Chembiochem : a European journal of chemical biology.

[86]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[87]  P. Cossart,et al.  The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor , 2001, Molecular microbiology.

[88]  M. Naujokas,et al.  InlB-Dependent Internalization of Listeria Is Mediated by the Met Receptor Tyrosine Kinase , 2000, Cell.

[89]  F. Fiedler,et al.  Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of Gram‐positive bacteria , 1999, Molecular microbiology.

[90]  A. Bhunia,et al.  Influence of Temperature and Growth Phase on Expression of a 104-Kilodalton Listeria Adhesion Protein inListeria monocytogenes , 1999, Applied and Environmental Microbiology.

[91]  A. Bhunia,et al.  Surface protein p104 is involved in adhesion of Listeria monocytogenes to human intestinal cell line, Caco-2. , 1999, Journal of medical microbiology.

[92]  J. R. Scott,et al.  Iron starvation causes release from the group A streptococcus of the ADP-ribosylating protein called plasmin receptor or surface glyceraldehyde-3-phosphate-dehydrogenase , 1996, Infection and immunity.

[93]  S. Jones,et al.  Principles of protein-protein interactions. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[94]  P. Cossart,et al.  Entry of Listeria monocytogenes into hepatocytes requires expression of InIB, a surface protein of the internalin multigene family , 1995, Molecular microbiology.

[95]  W. Goebel,et al.  Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene , 1992, Journal of bacteriology.

[96]  M. G. Johnson,et al.  Development and characterization of a monoclonal antibody specific for Listeria monocytogenes and Listeria innocua , 1991, Infection and immunity.

[97]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[98]  K. R. Woods,et al.  Prediction of protein antigenic determinants from amino acid sequences. , 1981, Proceedings of the National Academy of Sciences of the United States of America.