Constraints on physical properties of z ∼ 6 galaxies using cosmological hydrodynamic simulations

We conduct a detailed comparison of broad-band spectral energy distributions of six z ≥ 5.5 galaxies against galaxies drawn from cosmological hydrodynamic simulations. We employ a new tool called sPoc (Simulated photometry-derived observational constraints), which constrains the physical properties of observed galaxies through a Bayesian likelihood comparison with model galaxies. We first show that sPoc self-consistently recovers the physical properties of a test sample of high-redshift galaxies drawn from our simulations, although dust extinction can yield systematic uncertainties at the ≈50 per cent level. We then use SPOC to test whether our simulations can reproduce the observed photometry of six z > 5.5 galaxies drawn from the literature. We compare physical properties derived from simulated star formation histories (SFHs) versus assuming simple models such as constant, exponentially decaying and constantly rising. For five objects, our simulated galaxies match the observations at least as well as simple SFH models, with similar favoured values obtained for the intrinsic physical parameters such as stellar mass and star formation rate, but with substantially smaller uncertainties. Our results are broadly insensitive to simulation choices for galactic outflows and dust reddening. Hence the existence of early galaxies as observed is broadly consistent with current hierarchical structure formation models. However, one of the six objects has photometry that is best fitted by a bursty SFH unlike anything produced in our simulations, driven primarily by a high K-band flux. These findings illustrate how SPOC provides a robust tool for optimally utilizing hydrodynamic simulations (or any model that predicts galaxy SFHs) to constrain the physical properties of individual galaxies having only photometric data, as well as identify objects that challenge current models.

[1]  M. Lacy,et al.  The stellar mass density at z ~6 from Spitzer imaging of i'-drop galaxies , 2006, astro-ph/0607306.

[2]  J. Dunlop,et al.  A systematic search for very massive galaxies at z > 4 , 2006, astro-ph/0606192.

[3]  R. Bouwens,et al.  Spitzer IRAC Confirmation of z850-Dropout Galaxies in the Hubble Ultra Deep Field: Stellar Masses and Ages at z ≈ 7 , 2006, astro-ph/0608444.

[4]  B. Oppenheimer,et al.  Cosmological simulations of intergalactic medium enrichment from galactic outflows , 2006, astro-ph/0605651.

[5]  Carlos S. Frenk,et al.  The large-scale structure of the Universe , 2006, Nature.

[6]  A. Cimatti,et al.  Evidence for TP-AGB Stars in High-Redshift Galaxies, and Their Effect on Deriving Stellar Population Parameters , 2006, astro-ph/0604530.

[7]  S. Okamura,et al.  The End of the Reionization Epoch Probed by Lyα Emitters at z = 6.5 in the Subaru Deep Field , 2006, astro-ph/0604149.

[8]  Takashi Hattori,et al.  An optical spectrum of the afterglow of a γ-ray burst at a redshift of z = 6.295 , 2006, Nature.

[9]  K. Schawinski,et al.  The Physical Nature of Lyα-emitting Galaxies at z = 3.1 , 2006, astro-ph/0603244.

[10]  V. Springel,et al.  Lyman break galaxies at z= 4–6 in cosmological smoothed particle hydrodynamics simulations , 2006 .

[11]  Mamoru Doi,et al.  Lyα Emitters at z = 5.7 in the Subaru Deep Field , 2006, astro-ph/0602614.

[12]  C. Steidel,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[13]  K. Finlator,et al.  The physical properties and detectability of reionization-epoch galaxies , 2005, astro-ph/0511532.

[14]  Ssc,et al.  Spitzer Observations of Massive, Red Galaxies at High Redshift , 2005, astro-ph/0511289.

[15]  T. Nagao,et al.  Narrowband Survey of the GOODS Fields: Search for Lyα Emitters at z = 5.7 , 2005, astro-ph/0510672.

[16]  R. Davé,et al.  The Physical and Photometric Properties of High-Redshift Galaxies in Cosmological Hydrodynamic Simulations , 2005, astro-ph/0507719.

[17]  C. Wolf,et al.  The Wide Field Imager Lyman-Alpha Search (WFILAS) for galaxies at redshift ~5.7: II. Survey design and sample analysis , 2006, astro-ph/0605019.

[18]  Ranga-Ram Chary,et al.  Spitzer Constraints on the z = 6.56 Galaxy Lensed by Abell 370 , 2005, astro-ph/0510827.

[19]  S. Gwyn,et al.  The Evolution of Stellar Mass in Galaxies in the NICMOS Ultra Deep Field , 2005 .

[20]  S. M. Fall,et al.  Evidence for a Massive Poststarburst Galaxy at z ~ 6.5 , 2005, astro-ph/0509768.

[21]  S. Okamura,et al.  Spectroscopy of i′-Dropout Galaxies with an NB921-Band Depression in the Subaru Deep Field , 2005, astro-ph/0508179.

[22]  C. Conselice,et al.  Rest-Frame Ultraviolet-to-Optical Properties of Galaxies at z ≈ 6 and z ≈ 5 in the Hubble Ultra Deep Field: From Hubble to Spitzer , 2005, astro-ph/0507673.

[23]  R. Pelló,et al.  Stellar populations and Lyα emission in two lensed z>~ 6 galaxies , 2005, astro-ph/0506685.

[24]  Institute for Astronomy,et al.  Outflows in Infrared-Luminous Starbursts at z < 0.5. II. Analysis and Discussion , 2005, astro-ph/0506611.

[25]  V. Springel,et al.  Lyman Break Galaxies at z = 4 - 6 in cosmological SPH Simulations , 2005, astro-ph/0503631.

[26]  Jia-Sheng Huang,et al.  Ultraviolet to Mid-Infrared Observations of Star-forming Galaxies at z ~ 2: Stellar Masses and Stellar Populations , 2005, astro-ph/0503485.

[27]  Cambridge,et al.  Spitzer imaging of i′‐drop galaxies: old stars at z≈ 6 , 2005, astro-ph/0502385.

[28]  S. Djorgovski,et al.  Evidence of Primordial Clustering around the QSO SDSS J1030+0524 at z = 6.28 , 2005, astro-ph/0502223.

[29]  J. Walsh,et al.  An Overdensity of Galaxies at z = 5.9 ± 0.2 in the Hubble Ultra Deep Field Confirmed Using the ACS Grism , 2005, astro-ph/0501478.

[30]  J. Rhoads,et al.  An Overdensity of Lyα Emitters at Redshift z ≈ 5.7 near the Hubble Ultra Deep Field , 2005, astro-ph/0501479.

[31]  S. Okamura,et al.  To Appear in the Astrophysical Journal Letters Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE DISCOVERY OF PRIMEVAL LARGE-SCALE STRUCTURES WITH FORMING CLUSTERS AT REDSHIFT 6 1 , 2004 .

[32]  M. Salvato,et al.  The Stellar Mass Function of Galaxies to z ~ 5 in the FORS Deep and GOODS-South Fields , 2004, astro-ph/0412167.

[33]  C. Wolf,et al.  The Wide Field Imager Lyman-Alpha Search (WFILAS) for galaxies at redshift ~5.7 - I. A spatially compact Lyα emitting galaxy at redshift 5.721 , 2004, astro-ph/0411782.

[34]  C. Martin Mapping Large-Scale Gaseous Outflows in Ultraluminous Galaxies with Keck II ESI Spectra: Variations in Outflow Velocity with Galactic Mass , 2004, astro-ph/0410247.

[35]  E. Quataert,et al.  On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds , 2004, astro-ph/0406070.

[36]  Rodger I. Thompson,et al.  Galaxies at [FORMULA][F]z~7-8[/F][/FORMULA]: [FORMULA][F]z[INF]850[/INF][/F][/FORMULA]-Dropouts in the Hubble Ultra Deep Field , 2004 .

[37]  R. J. Ivison,et al.  The Rest-Frame Optical Properties of SCUBA Galaxies , 2004, astro-ph/0412574.

[38]  IoA,et al.  Spitzer and Hubble Space Telescope Constraints on the Physical Properties of the z ~ 7 Galaxy Strongly Lensed by A2218 , 2004, astro-ph/0411117.

[39]  H. Spinrad,et al.  Spectroscopic Properties of the z ≈ 4.5 Lyα Emitters , 2004, astro-ph/0409090.

[40]  S. Okamura,et al.  A Strong Lyα Emitter at z = 6.33 in the Subaru Deep Field Selected as an i'-Dropout , 2004, astro-ph/0408255.

[41]  S. Djorgovski,et al.  A Galaxy at z = 6.545 and Constraints on the Epoch of Reionization , 2004, astro-ph/0407409.

[42]  Firenze,et al.  A Lyman α emitter at z = 6.5 found with slitless spectroscopy , 2004, astro-ph/0406140.

[43]  Patrick J. McCarthy,et al.  Hubble Space Telescope Imaging and Keck Spectroscopy of z ≈ 6 i-Band Dropout Galaxies in the Advanced Camera for Surveys GOODS Fields , 2004 .

[44]  H. Spinrad,et al.  X-Ray Nondetection of the Lyα Emitters at z ~ 4.5 , 2004, astro-ph/0404611.

[45]  R. Bouwens,et al.  Star Formation at z ~ 6: The Hubble Ultra Deep Parallel Fields , 2004 .

[46]  H. Spinrad,et al.  A Luminous Lyα-emitting Galaxy at Redshift z = 6.535: Discovery and Spectroscopic Confirmation , 2004, astro-ph/0403161.

[47]  J. Kneib,et al.  The Abundance of Low-Luminosity Lyα Emitters at High Redshift , 2003, astro-ph/0310478.

[48]  Padova,et al.  Color-selected Galaxies at z ≈ 6 in the Great Observatories Origins Deep Survey , 2003, astro-ph/0309070.

[49]  H. Ferguson,et al.  The z ~ 4 Lyman Break Galaxies: Colors and Theoretical Predictions , 2003, astro-ph/0308541.

[50]  Matthew Colless,et al.  Three Lyα Emitters at z ≈ 6: Early GMOS/Gemini Data from the GLARE Project , 2003, astro-ph/0312459.

[51]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[52]  M. Wolff,et al.  A Quantitative Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way Ultraviolet to Near-Infrared Extinction Curves , 2003 .

[53]  Geoffrey C. Clayton,et al.  A Quantitative Comparison of SMC, LMC, and Milky Way UV to NIR Extinction Curves , 2003, astro-ph/0305257.

[54]  Chile,et al.  Discovery of a z = 6.17 galaxy from CFHT and VLT observations , 2003, astro-ph/0303646.

[55]  Cambridge,et al.  A star‐forming galaxy at z= 5.78 in the Chandra Deep Field South , 2003, astro-ph/0302401.

[56]  Cambridge,et al.  Lyman break galaxies and the star formation rate of the Universe at z≈ 6 , 2003, astro-ph/0302212.

[57]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[58]  E. al.,et al.  The Discovery of Two Lyman α Emitters beyond Redshift 6 in the Subaru Deep Field , 2003 .

[59]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[60]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[61]  Arjun Dey,et al.  Spectroscopic Confirmation of Three Redshift z ≈ 5.7 Lyα Emitters from the Large-Area Lyman Alpha Survey , 2002, astro-ph/0209544.

[62]  J. Kneib,et al.  Erratum: “A Redshift z = 6.56 Galaxy behind the Cluster Abell 370” (ApJ, 568, L75 [2002]) , 2002 .

[63]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2002 .

[64]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[65]  V. Springel,et al.  The history of star formation in a lcdm universe , 2002, astro-ph/0206395.

[66]  J. Rhoads,et al.  L[CLC]y[/CLC]α Emitters at Redshift [CLC][ITAL]z[/ITAL][/CLC] = 5.7 , 2001 .

[67]  V. Springel,et al.  Cosmological SPH simulations: The entropy equation , 2001, astro-ph/0111016.

[68]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[69]  F. Pearce,et al.  Revisiting the cosmic cooling crisis , 2001, astro-ph/0104041.

[70]  H. Ferguson,et al.  The Stellar Populations and Evolution of Lyman Break Galaxies , 2000, astro-ph/0105087.

[71]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[72]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[73]  S. Faber,et al.  Young Galaxies: What Turns Them On? , 1999, astro-ph/9906104.

[74]  R. Nichol,et al.  High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data , 1999, astro-ph/0103228.

[75]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[76]  R. Wechsler,et al.  The nature of high-redshift galaxies , 1998, astro-ph/0006364.

[77]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[78]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[79]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[80]  J. Ostriker,et al.  A theory of the interstellar medium - Three components regulated by supernova explosions in an inhomogeneous substrate , 1977 .

[81]  I. Iben Stellar Evolution Within and Off the Main Sequence , 1967 .