Asynchronous Binaural Spatial Audition Sensor With 2$\,\times\,$64$\,\times\,$4 Channel Output

This paper proposes an integrated event-based binaural silicon cochlea system aimed at efficient spatial audition and auditory scene analysis. The cochlea chip has a matched pair of digitally-calibrated 64-stage cascaded analog second-order filter banks with 512 pulse-frequency modulated (PFM) address-event representation (AER) outputs. The quality factors (Qs) of channels are individually adjusted by local DACs. The 2P4M 0.35 um CMOS chip consumes an average power of 14 mW including its integrated microphone preamplifiers and biasing circuits. Typical speech data rates are 10 k to 100 k events per second (eps) with peak output rates of 10 Meps. The event timing jitter is 2 us for a 250 mVpp input. It is shown that the computational cost of an event-driven source localization application can be up to 40 times lower when compared to a conventional cross-correlation approach.

[1]  Rahul Sarpeshkar,et al.  Analog Versus Digital: Extrapolating from Electronics to Neurobiology , 1998, Neural Computation.

[2]  Craig T. Jin,et al.  Adaptive Sound Localization with a Silicon Cochlea Pair , 2010, Front. Neurosci..

[3]  Shih-Chii Liu,et al.  Neuromorphic sensory systems , 2010, Current Opinion in Neurobiology.

[4]  Rahul Sarpeshkar,et al.  A low-power high-PSRR current-mode microphone preamplifier , 2003, IEEE J. Solid State Circuits.

[5]  E. Fragniere,et al.  A 100-channel analog CMOS auditory filter bank for speech recognition , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[6]  S. Shamma Speech processing in the auditory system. I: The representation of speech sounds in the responses of the auditory nerve. , 1985, The Journal of the Acoustical Society of America.

[7]  André van Schaik,et al.  AER EAR: A Matched Silicon Cochlea Pair With Address Event Representation Interface , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Rahul Sarpeshkar,et al.  A Cochlear-Implant Processor for Encoding Music and Lowering Stimulation Power , 2008, IEEE Pervasive Computing.

[9]  Kwabena Boahen,et al.  A burst-mode word-serial address-event link-I: transmitter design , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Tobi Delbrück,et al.  Event-based 64-channel binaural silicon cochlea with Q enhancement mechanisms , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[11]  G. Carter,et al.  The generalized correlation method for estimation of time delay , 1976 .

[12]  Craig T. Jin,et al.  Sound localisation with a silicon cochlea pair , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[13]  Richard F. Lyon,et al.  An analog electronic cochlea , 1988, IEEE Trans. Acoust. Speech Signal Process..

[14]  Tobi Delbrück,et al.  Real-time speaker identification using the AEREAR2 event-based silicon cochlea , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[15]  E.M. Drakakis,et al.  A Biomimetic, 4.5 $\mu$W, 120+ dB, Log-Domain Cochlea Channel With AGC , 2009, IEEE Journal of Solid-State Circuits.

[16]  A. Palmer,et al.  Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells , 1986, Hearing Research.

[17]  André van Schaik,et al.  Improved Silicon Cochlea using Compatible Lateral Bipolar Transistors , 1995, NIPS.

[18]  Rahul Sarpeshkar,et al.  An ultra-low-power programmable analog bionic ear processor , 2005, IEEE Transactions on Biomedical Engineering.

[19]  Tobi Delbrück,et al.  A 5 Meps $100 USB2.0 Address-Event Monitor-Sequencer Interface , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[20]  Craig T. Jin,et al.  An Active 2-D Silicon Cochlea , 2008, IEEE Transactions on Biomedical Circuits and Systems.

[21]  Rahul Sarpeshkar,et al.  A Low-Power Wide-Dynamic-Range Analog VLSI Cochlea , 1998 .

[22]  Timothy K. Horiuchi,et al.  An ultrasonic filterbank with spiking neurons , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[23]  Hynek Hermansky,et al.  The use of spike-based representations for hardware audition systems , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[24]  Timothy K. Horiuchi,et al.  Binaural spectral cues for ultrasonic localization , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[25]  Shih-Chii Liu,et al.  Estimating the location of a sound source with a spike-timing localization algorithm , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[26]  Gert Cauwenberghs,et al.  An analog VLSI chip with asynchronous interface for auditory feature extraction , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[27]  R. Sarpeshkar,et al.  A Bio-Inspired Active Radio-Frequency Silicon Cochlea , 2009, IEEE Journal of Solid-State Circuits.

[28]  David V. Anderson,et al.  Cooperative analog-digital signal processing , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[29]  K. Boahen,et al.  A 360-Channel Speech Preprocessor that Emulates the Cochlear Amplifier , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[30]  Bo Wen,et al.  A Silicon Cochlea With Active Coupling , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[31]  Tobi Delbrück,et al.  Fully programmable bias current generator with 24 bit resolution per bias , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[32]  Richard F. Lyon,et al.  Improved implementation of the silicon cochlea , 1992 .

[33]  John Wawrzynek,et al.  Silicon Auditory Processors as Computer Peripherals , 1992, NIPS.

[34]  Hynek Hermansky,et al.  Fully integrated 500uW speech detection wake-up circuit , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[35]  Shih-Chii Liu,et al.  Speaker-independent isolated digit recognition using an AER silicon cochlea , 2011, 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[36]  C. Toumazou,et al.  A 126-/spl mu/W cochlear chip for a totally implantable system , 2005, IEEE Journal of Solid-State Circuits.

[37]  Tobi Delbrück,et al.  Bias Current Generators with Wide Dynamic Range , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[38]  Shantanu Chakrabartty,et al.  Exploiting spike-based dynamics in a silicon cochlea for speaker identification , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.