The evolution of the Galactic metallicity gradient from high-resolution spectroscopy of open clusters

Context. Open clusters offer a unique possibility to study the time evolution of the radial metallicity gradients of several elements in our Galaxy, because they span large intervals in age and Galactocentric distance, and both quantities can be more accurately derived than for field stars. Aims. We re-address the issue of the Galactic metallicity gradient and its time evolution by comparing the empirical gradients traced by a sample of 45 open clusters with a chemical evolution model of the Galaxy. Methods. At variance with previous similar studies, we have collected from the literature only abundances derived from high-resolution spectra. The clusters have Galactocentric distances $7 \la R_{\rm GC} \la 22$ kpc and ages from ~30 Myr to 11 Gyr. We also consider the α -elements Si, Ca, Ti, and the iron-peak elements Cr and Ni. Cepheids trace instead the present-day Fe gradient in the inner parts of the disk. Results. The data for iron-peak and α -elements indicate a steep metallicity gradient for $R_{\rm GC}\la 12$ kpc and a plateau at larger radii. The time evolution of the metallicity distribution is characterized by a uniform increase of the metallicity at all radii, preserving the shape of the gradient, with marginal evidence for a flattening of the gradient with time in the radial range 7-12 kpc. Our model is able to reproduce the main features of the metallicity gradient and its evolution with an infall law exponentially decreasing with radius and with a collapse time scale of the order of 8 Gyr at the solar radius. This results in a rapid collapse in the inner regions, i.e. $R_{\rm GC}\la 12$ kpc (that we associate with an early phase of disk formation from the collapse of the halo) and in a slow inflow of material per unit area in the outer regions at a constant rate with time (that we associate with accretion from the intergalactic medium). An additional uniform inflow per unit disk area would help to better reproduce the metallicity plateau at large Galactocentric radii, but it is difficult to reconcile with the present-day radial behaviour of the star formation rate. Conclusions. Our results favour a scenario where the Galactic disk is formed inside-out by the rapid collapse of the halo and by a subsequent continuous accretion of intergalactic gas

[1]  J. Bernard-Salas,et al.  Planetary nebulae abundances and stellar evolution , 2006, astro-ph/0608001.

[2]  D. O. Astronomy,et al.  Open clusters as key tracers of Galactic chemical evolution. III. Element abundances in Berkeley 20 , 2008, 0807.2313.

[3]  L. Pasquini,et al.  Abundances of four open clusters from solar stars , 2008, 0806.2280.

[4]  E. Friel,et al.  ABUNDANCES OF RED GIANTS IN OLD OPEN CLUSTERS. III. NGC 7142 , 2008 .

[5]  S. Villanova,et al.  Old open clusters as key tracers of Galactic chemical evolution II. Iron and elemental abundances in NGC 2324, NGC 2477, NGC 2660, NGC 3960, and Berkeley 32 , 2008 .

[6]  C. M. Bidin,et al.  The old open cluster NGC 2112: updated estimates of fundamental parameters based on a membership analysis , 2008, 0802.3243.

[7]  F. Palla,et al.  Detection of the lithium depletion boundary in the young open cluster IC 4665 , 2007, 0712.0226.

[8]  P. Frinchaboy,et al.  Old open clusters in the outer Galactic disk , 2007, 0709.2126.

[9]  E. Corbelli,et al.  The building up of the disk galaxy M 33 and the evolution of the metallicity gradient , 2007, 0704.3187.

[10]  Santiago,et al.  Detailed chemical composition of Galactic Cepheids. A determination of the Galactic abundance gradie , 2007, astro-ph/0701499.

[11]  C. Quireza,et al.  Time variation of radial gradients in the Galactic disk: electron temperatures and abundances , 2007, astro-ph/0701337.

[12]  S. Randich,et al.  Element abundances in the metal-rich open cluster NGC 6253 , 2007, astro-ph/0701182.

[13]  P. François,et al.  Abundance gradients in the Milky Way for α elements, iron peak elements, barium, lanthanum, and europium , 2006, astro-ph/0609813.

[14]  U. Washington,et al.  The absolute motion of the peculiar cluster NGC 6791 , 2006, astro-ph/0610546.

[15]  L. Morbidelli,et al.  The chemical gradient of oxygen in the Galaxy from planetary nebulae , 2006 .

[16]  J. Bernard-Salas,et al.  Planetary nebulae abundances and stellar evolution II , 2006, 1005.3042.

[17]  K. Cunha,et al.  Planetary Nebula Abundances and Morphology: Probing the Chemical Evolution of the Milky Way , 2006, astro-ph/0607480.

[18]  S. Randich,et al.  Old open clusters as key tracers of Galactic chemical evolution. I. Fe abundances in NGC 2660, NGC 3 , 2006, astro-ph/0607438.

[19]  M. R. Haas,et al.  Abundance Gradients in the Galaxy , 2006 .

[20]  L. Pasquini,et al.  Element abundances of unevolved stars in the open cluster M 67 , 2006, astro-ph/0601239.

[21]  Giampaolo Piotto,et al.  NGC 6791: An Exotic Open Cluster or the Nucleus of a Tidally Disrupted Galaxy? , 2005, astro-ph/0512650.

[22]  J. Ostriker,et al.  A simple model for the evolution of disc galaxies: the Milky Way , 2005, astro-ph/0505594.

[23]  A. Helmi,et al.  Chemical Abundances and Mixing in Stars in the Milky Way and Its Satellites , 2006 .

[24]  L. Pasquini,et al.  Chemical abundances and mixing in stars in the milky way and its satellites : proceedings of the ESO-Arcetri Workshop held in Castiglione della Pescaia, Italy, 13-17 September, 2004 , 2006 .

[25]  Bangalore,et al.  Elemental abundance survey of the Galactic thick disc , 2005, astro-ph/0512505.

[26]  A. Bragaglia,et al.  The Bologna Open Cluster Chemical Evolution Project: Midterm Results from the Photometric Sample , 2005, astro-ph/0511020.

[27]  R. Jeffries,et al.  Elemental abundances in the Blanco 1 open cluster , 2005, astro-ph/0508606.

[28]  Astrophysics,et al.  Spectroscopic Abundance Analysis of Dwarfs in the Young Open Cluster IC 4665 , 2005, astro-ph/0508387.

[29]  E. Friel,et al.  Abundances of Red Giants in Old Open Clusters. II. Berkeley 17 , 2005 .

[30]  G. Carraro,et al.  Metal Abundances in Extremely Distant Galactic Old Open Clusters. II. Berkeley 22 and Berkeley 66 , 2005, astro-ph/0504282.

[31]  B. Carney,et al.  Elemental Abundance Ratios in Stars of the Outer Galactic Disk. I. Open Clusters , 2005, astro-ph/0504193.

[32]  M. Mollá,et al.  A grid of chemical evolution models as a tool to interpret spiral and irregular galaxies data , 2005 .

[33]  B. Edvardsson,et al.  Chemical composition of evolved stars in the open cluster NGC 7789 , 2005 .

[34]  M. Mollá,et al.  Low and intermediate mass star yields: The evolution of carbon abundances , 2004, astro-ph/0411746.

[35]  F. Mannucci,et al.  The Supernova rate per unit mass , 2004, astro-ph/0411450.

[36]  C. Chiappini,et al.  Interpretation of Abundance Ratios , 2004, Publications of the Astronomical Society of Australia.

[37]  G. Carraro,et al.  Metal Abundances in Extremely Distant Galactic Old Open Clusters. I. Berkeley 29 and Saurer 1 , 2004, astro-ph/0406679.

[38]  L. Pasquini,et al.  Detailed chemical composition of the open cluster IC 4651: The iron peak, α elements, and Li , 2004, astro-ph/0406113.

[39]  R. Gratton,et al.  Iron abundances from high-resolution spectroscopy of the open clusters NGC 2506, NGC 6134, and IC 4651 , 2004, astro-ph/0404298.

[40]  Explosive Yields of Massive Stars from Z = 0 to Z = Z? , 2004, astro-ph/0402625.

[41]  K. S. Boer The contribution of halo red giant mass loss to the high-velocity gas falling onto the Milky Way disk , 2004, astro-ph/0402630.

[42]  -INAF,et al.  The evolution of the Milky Way from its earliest phases: Constraints on stellar nucleosynthesis , 2004, astro-ph/0401499.

[43]  Garching,et al.  The age of the oldest Open Clusters , 2003, astro-ph/0310363.

[44]  J. Lépine,et al.  The Galactic abundance gradient from Cepheids - V. Transition zone between 10 and 11 kpc , 2004 .

[45]  E. Friel,et al.  Abundances of Red Giants in the Old Open Cluster Collinder 261 , 2003 .

[46]  W. Cochran,et al.  Searching for Planets in the Hyades. IV. Differential Abundance Analysis of Hyades Dwarfs , 2003 .

[47]  S. Randich,et al.  The evolution of lithium depletion in young open clusters: NGC 6475 , 2003, astro-ph/0305394.

[48]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[49]  W. Gieren,et al.  The galactic abundance gradient from Cepheids - IV. New results for the outer disc , 2003 .

[50]  J. Hou,et al.  On the Galactic Disk Metallicity Distribution from Open Clusters. I. New Catalogs and Abundance Gradient , 2002, astro-ph/0212542.

[51]  W. J. Maciel,et al.  An estimate of the time variation of the O/H radial gradient from planetary nebulae , 2002, astro-ph/0210470.

[52]  Nathan D. Miller,et al.  Metallicities of Old Open Clusters , 2002 .

[53]  D. Soderblom,et al.  Spectroscopic Abundances of Solar-Type Dwarfs in the Open Cluster M34 (NGC 1039) , 2001 .

[54]  S. Corder,et al.  Field Stars, Open Clusters, and the Galactic Abundance Gradient , 2001, astro-ph/0106136.

[55]  C. Chiappini,et al.  Abundance Gradients and the Formation of the Milky Way , 2001, astro-ph/0102134.

[56]  G. González,et al.  Elemental Abundances in the Inner Galaxy Open Cluster M11 , 2000 .

[57]  L. Deharveng,et al.  Oxygen and helium abundances in Galactic H ii regions — II. Abundance gradients , 2000 .

[58]  Koichi Iwamoto,et al.  Nucleosynthesis in Chandrasekhar Mass Models for Type Ia Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation , 1999 .

[59]  G. Worthey,et al.  Publications of the Astronomical Society of the Pacific The Distribution Of Heavy Elements In Spiral And Elliptical Galaxies , 1999 .

[60]  France.,et al.  Chemo-spectrophotometric evolution of spiral galaxies — I. The model and the Milky Way , 1999, astro-ph/9902148.

[61]  G. Carraro,et al.  On the Galactic disc age–metallicity relation , 1997, astro-ph/9707185.

[62]  K. Ashman,et al.  Some Revised Observational Constraints on the Formation and Evolution of the Galactic Disk , 1997, astro-ph/9709122.

[63]  F. Ferrini,et al.  Evolution of Spiral Galaxies. VII. Time Evolution of the Radial Distributions of Abundances , 1997 .

[64]  C. Chiappini,et al.  The Chemical Evolution of the Galaxy: The Two-Infall Model , 1996, astro-ph/9609199.

[65]  P. Sackett Does the Milky Way Have a Maximal Disk? , 1996, astro-ph/9608164.

[66]  F. Ferrini,et al.  Evolution of Spiral Galaxies. VI. Radial Distributions of Abundances in External Galaxies , 1996 .

[67]  The Old Open Cluster, Berkeley 66 , 1996 .

[68]  M. Tosi Comparison of Chemical Evolution Models for the Galactic Disk , 1995, astro-ph/9512096.

[69]  E. D. Friel,et al.  The Old Open Clusters of the Milky Way , 1995 .

[70]  F. Ferrini,et al.  Evolution of spiral galaxies. III. Application of the multiphase model to the galactic disk , 1994 .

[71]  Randy L. Phelps,et al.  Development of the Galactic Disk: A Search for the Oldest Open Cluster , 1994 .

[72]  S. Holt,et al.  Back to the Galaxy , 1993 .

[73]  G. Gilmore,et al.  The distribution of low-mass stars in the Galactic disc , 1993 .

[74]  F. Ferrini,et al.  Evolution of spiral galaxies. I - Halo-disk connection for the evolution of the solar neighborhood , 1992 .

[75]  E. Friel,et al.  Chemical composition of open clusters. I. Fe/H from high-resolution spectroscopy. II. C/H and C/Fe in F dwarfs from high-resolution spectroscopy , 1990 .

[76]  S. M. Fall,et al.  Chemical evolution of the galactic disk with radial gas flows. , 1985 .

[77]  J. Audouze Nucleosynthesis and Chemical Evolution of Galaxies , 1983 .

[78]  K. Janes Evidence for an abundance gradient in the galactic disk , 1979 .

[79]  W. Arnett,et al.  Evolution Of Galaxies .2. Chemical Evolution Coefficients , 1973 .

[80]  W. Arnett,et al.  The Evolution of Galaxies. II. Chemical Evolution Coefficients , 1973 .

[81]  E. Salpeter The Luminosity function and stellar evolution , 1955 .