How Well Can Primal-Dual and Local-Ratio Algorithms Perform?

We define an algorithmic paradigm, the stack model, that captures most primal-dual and local-ratio algorithms for approximating covering and packing problems. The stack model is defined syntactically and without any complexity limitations. Hence our approximation bounds are independent of the P vs NP question. We provide tools to bound the performance of primal dual and local ratio algorithms and supply a (log n+1)/2 inapproximability result for set-cover, a 4/3 inapproximability for min steiner tree, and a 0.913 inapproximability for interval scheduling on two machines.

[1]  Ran Raz,et al.  A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP , 1997, STOC '97.

[2]  Béla Bollobás,et al.  Proving Integrality Gaps without Knowing the Linear Program , 2006, Theory Comput..

[3]  Sanjeev Arora Proving Integrality Gaps without Knowing the Linear Program , 2003, FCT.

[4]  Frits C. R. Spieksma,et al.  Simple Algorithms for a Weighted Interval Selection Problem , 2000, ISAAC.

[5]  Rajeev Motwani,et al.  On syntactic versus computational views of approximability , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[6]  Yuval Rabani,et al.  Improved Approximation Algorithms for Resource Allocation , 2002, IPCO.

[7]  R. Ravi,et al.  When cycles collapse: A general approximation technique for constrained two-connectivity problems , 1992, IPCO.

[8]  Russell Impagliazzo,et al.  Models of Greedy Algorithms for Graph Problems , 2004, SODA '04.

[9]  Petr Slavík,et al.  A tight analysis of the greedy algorithm for set cover , 1996, STOC '96.

[10]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[11]  Kurt Mehlhorn,et al.  A Faster Approximation Algorithm for the Steiner Problem in Graphs , 1988, Inf. Process. Lett..

[12]  Allan Borodin,et al.  The Power of Priority Algorithms for Facility Location and Set Cover , 2004, Algorithmica.

[13]  Rina Dechter,et al.  On the Greedy Solution of Ordering Problems , 1989, INFORMS J. Comput..

[14]  Allan Borodin,et al.  On the Power of Priority Algorithms for Facility Location and Set Cover , 2002, APPROX.

[15]  Akcoglu Karhan,et al.  Opportunity Cost Algorithms for Combinatorial Auctions , 2000 .

[16]  Dror Rawitz,et al.  On the Equivalence between the Primal-Dual Schema and the Local-Ratio Technique , 2001, RANDOM-APPROX.

[17]  David P. Williamson The primal-dual method for approximation algorithms , 2002, Math. Program..

[18]  B. Korte,et al.  Greedoids and Linear Objective Functions , 1984 .

[19]  Reuven Bar-Yehuda,et al.  A Linear-Time Approximation Algorithm for the Weighted Vertex Cover Problem , 1981, J. Algorithms.

[20]  Allan Borodin,et al.  Toward a Model for Backtracking and Dynamic Programming , 2005, Computational Complexity Conference.

[21]  Piotr Berman,et al.  Improvements in throughout maximization for real-time scheduling , 2000, STOC '00.

[22]  Vijay V. Vazirani,et al.  On the bidirected cut relaxation for the metric Steiner tree problem , 1999, SODA '99.

[23]  Robert Krauthgamer,et al.  The Probable Value of the Lovász--Schrijver Relaxations for Maximum Independent Set , 2003, SIAM J. Comput..

[24]  Frits C. R. Spieksma,et al.  Interval selection: Applications, algorithms, and lower bounds , 2003, J. Algorithms.

[25]  Reuven Bar-Yehuda,et al.  Scheduling split intervals , 2002, SODA '02.

[26]  Dror Rawitz,et al.  Local ratio: A unified framework for approximation algorithms. In Memoriam: Shimon Even 1935-2004 , 2004, CSUR.

[27]  Dror Rawitz,et al.  Using fractional primal-dual to schedule split intervals with demands , 2005, Discret. Optim..

[28]  Reuven Bar-Yehuda,et al.  A unified approach to approximating resource allocation and scheduling , 2001, JACM.

[29]  David P. Williamson,et al.  A general approximation technique for constrained forest problems , 1992, SODA '92.

[30]  Allan Borodin,et al.  (Incremental) Priority Algorithms , 2002, SODA '02.

[31]  Vasek Chvátal,et al.  Hard Knapsack Problems , 1980, Oper. Res..

[32]  Alex Zelikovsky,et al.  Improved Steiner tree approximation in graphs , 2000, SODA '00.

[33]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[34]  Vijay V. Vazirani,et al.  Approximation algorithms for metric facility location and k-Median problems using the primal-dual schema and Lagrangian relaxation , 2001, JACM.

[35]  Jack Edmonds,et al.  Matroids and the greedy algorithm , 1971, Math. Program..

[36]  Martin Thimm,et al.  On the approximability of the Steiner tree problem , 2003, Theor. Comput. Sci..

[37]  Esther M. Arkin,et al.  Scheduling jobs with fixed start and end times , 1987, Discret. Appl. Math..

[38]  P. Berman,et al.  A Simple Approximation Algorithm for Nonoverlapping Local Alignments (Weighted Independent Sets of Axis Parallel Rectangles) , 2002 .

[39]  R. Ravi,et al.  When Trees Collide: An Approximation Algorithm for the Generalized Steiner Problem on Networks , 1995, SIAM J. Comput..

[40]  Dan Geiger,et al.  Approximation Algorithms for the Loop Cutset Problem , 1994, UAI.

[41]  Piotr Berman,et al.  Constant Ratio Approximations of the Weighted Feedback Vertex Set Problem for Undirected Graphs , 1995, ISAAC.

[42]  David P. Williamson,et al.  A primal-dual interpretation of two 2-approximation algorithms for the feedback vertex set problem in undirected graphs , 1998, Oper. Res. Lett..

[43]  Dimitris Bertsimas,et al.  From valid inequalities to heuristics: a unified view of primal-dual approximation algorithms in covering problems , 1995, SODA '95.