The shaking-B2 Mutation Disrupts Electrical Synapses in a Flight Circuit in AdultDrosophila

The shaking-B2 mutation was used to analyze synapses between haltere afferents and a flight motoneuron in adult Drosophila. We show that the electrical synapses among many neurons in the flight circuit are disrupted inshaking-B2 flies, suggesting thatshaking-B expression is required for electrical synapses throughout the nervous system. In wild-type flies haltere afferents are dye-coupled to the first basalar motoneuron, and stimulation of these afferents evokes electromyograms from the first basalar muscle with short latencies. In shaking-B2 flies dye coupling between haltere afferents and the motoneuron is abolished, and afferent stimulation evokes electromyograms at abnormally long latencies. Intracellular recordings from the motoneuron confirm that the site of the defect in shaking-B2 flies is at the synapses between haltere afferents and the flight motoneuron. The nicotinic cholinergic antagonist mecamylamine blocks the haltere-to-flight motoneuron synapses inshaking-B2 flies but does not block those synapses in wild-type flies. Together, these results show that the haltere-to-flight motoneuron synapses comprise an electrical component that requires shaking-B and a chemical component that is likely to be cholinergic.

[1]  M. Dickinson,et al.  Haltere Afferents Provide Direct, Electrotonic Input to a Steering Motor Neuron in the Blowfly, Calliphora , 1996, The Journal of Neuroscience.

[2]  R. Wyman,et al.  Passover eliminates gap junctional communication between neurons of the giant fiber system in Drosophila. off. , 1996, Journal of neurobiology.

[3]  M. Dickinson,et al.  Position‐specific central projections of mechanosensory neurons on the haltere of the blow fly, Calliphora vicina , 1996, The Journal of comparative neurology.

[4]  J. Bacon,et al.  Mutations in shaking-B prevent electrical synapse formation in the Drosophila giant fiber system , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  A. Pereda,et al.  Retrograde synaptic communication via gap junctions coupling auditory afferents to the Mauthner cell , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  M. Todman,et al.  Essential and neural transcripts from the Drosophila shaking-B locus are differentially expressed in the embryonic mesoderm and pupal nervous system. , 1995, Developmental biology.

[7]  M. Szpir,et al.  Neuronal organization of the cochlear nuclei in alligator lizards: A light and electron microscopic investigation , 1995, The Journal of comparative neurology.

[8]  M. Monastirioti,et al.  Octopamine immunoreactivity in the fruit fly Drosophila melanogaster , 1995, The Journal of comparative neurology.

[9]  A. Roberts,et al.  Cholinergic and electrical synapses between synergistic spinal motoneurones in the Xenopus laevis embryo. , 1995, The Journal of physiology.

[10]  J. Trimarchi,et al.  The motor neurons innervating the direct flight muscles of Drosophila melanogaster are morphologically specialized , 1994, The Journal of comparative neurology.

[11]  H. Pflüger,et al.  Fate of abdominal ventral unpaired median cells during metamorphosis of the hawkmoth, Manduca sexta , 1993, The Journal of comparative neurology.

[12]  R. Wyman,et al.  Dendritic reduction in Passover, a Drosophila mutant with a defective giant fiber neuronal pathway. , 1993, Journal of neurobiology.

[13]  R. Wyman,et al.  Passover: A gene required for synaptic connectivity in the giant fiber system of Drosophila , 1993, Cell.

[14]  B. Trimmer,et al.  Muscarinic acetylcholine receptors modulate the excitability of an identified insect motoneuron. , 1993, Journal of Neurophysiology.

[15]  J. Trimarchi,et al.  Giant fiber activation of an intrinsic muscle in the mesothoracic leg of Drosophila melanogaster. , 1993, The Journal of experimental biology.

[16]  C. Lingle,et al.  Activation of nicotinic acetylcholine receptors on cultured Drosophila and other insect neurones. , 1993, The Journal of physiology.

[17]  R. Murphey,et al.  Isolation of mutations affecting neural circuitry required for grooming behavior in Drosophila melanogaster. , 1993, Genetics.

[18]  H. Penzlin,et al.  A new specific antibody reveals octopamine‐like immunoreactivity in cockroach ventral nerve cord , 1992, The Journal of comparative neurology.

[19]  H. Pflüger,et al.  Octopamine immunoreactive cell populations in the locust thoracic‐abdominal nervous system , 1992, The Journal of comparative neurology.

[20]  C. Wu,et al.  Dual muscarinic and nicotinic action on a motor program in Drosophila. , 1991, Journal of neurobiology.

[21]  V. Rodrigues,et al.  The shaker and shaking-B genes specify elements in the processing of gustatory information in Drosophila melanogaster. , 1991, The Journal of experimental biology.

[22]  H. Sink,et al.  Location and connectivity of abdominal motoneurons in the embryo and larva of Drosophila melanogaster. , 1991, Journal of neurobiology.

[23]  R. Wyman,et al.  The Passover locus in Drosophila melanogaster: complex complementation and different effects on the giant fiber neural pathway. , 1990, Genetics.

[24]  K. Ikeda,et al.  Morphological identification of the motor neurons innervating the dorsal longitudinal flight muscle of Drosophila melanogaster , 1988, The Journal of comparative neurology.

[25]  S. Brookes,et al.  Unpaired Median Neurones in a Lepidopteran Larva (Antheraea Pernyi): I. Anatomy and Physiology , 1988 .

[26]  D. Faber,et al.  Synaptic transmission mediated by single club endings on the goldfish Mauthner cell. I. Characteristics of electrotonic and chemical postsynaptic potentials , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  Jeffrey C. Hall,et al.  Immunohistochemical localization of choline acetyltransferase during development and in Chats mutants of Drosophila melanogaster , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  M J Bastiani,et al.  Cell recognition during neuronal development. , 1984, Science.

[29]  R. Wyman,et al.  Mutations altering synaptic connectivity between identified neurons in Drosophila , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  John B. Thomas,et al.  Normal and mutant connectivity between identified neurons in Drosophila , 1983, Trends in Neurosciences.

[31]  N. Strausfeld,et al.  Cobalt-coupled neurons of a giant fibre system in Diptera , 1983, Journal of neurocytology.

[32]  M. Tanouye,et al.  Anatomy of Motor Axons to Direct Flight Muscles in Drosophila , 1983 .

[33]  J. Palka,et al.  The pattern of campaniform sensilla on the wing and haltere of Drosophila melanogaster and several of its homeotic mutants. , 1982, Journal of embryology and experimental morphology.

[34]  R. Wyman,et al.  Motor outputs of giant nerve fiber in Drosophila. , 1980, Journal of neurophysiology.

[35]  J Palka,et al.  Neural projection patterns from homeotic tissue of Drosophila studied in bithorax mutants and mosaics. , 1979, Developmental biology.

[36]  A. Ghysen Sensory neurones recognise defined pathways in Drosophila central nervous system , 1978, Nature.

[37]  J. C. Coggshall Neurons associated with the dorsal longitudinal flight muscles ofDrosophila melanogaster , 1978, The Journal of comparative neurology.

[38]  D. Fambrough Acetylcholine Receptors , 1974, The Journal of general physiology.

[39]  K. Ikeda,et al.  Neurophysiological Genetics in Drosophila melanogaster , 1974 .

[40]  K. Pearson,et al.  Properties of action potentials from insect motor nerve fibres. , 1970, The Journal of experimental biology.

[41]  D. Purves,et al.  Monosynaptic chemical and electrical connexions between sensory and motor cells in the central nervous system of the leech , 1970, The Journal of physiology.

[42]  A. E. Stuart Physiological and morphological properties of motoneurones in the central nervous system of the leech , 1970, The Journal of physiology.

[43]  J. Pringle The gyroscopic mechanism of the halteres of Diptera , 1948, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[44]  M. Bate,et al.  The drosophila neuromuscular junction: a model system for studying synaptic development and function. , 1996, Annual review of neuroscience.

[45]  R. I. Woodruff,et al.  The osmolarity of adult Drosophila hemolymph and its effect on oocyte-nurse cell electrical polarity. , 1994, Developmental biology.

[46]  Roland Hengstenberg,et al.  Cobalt pathways from haltere mechanoreceptors to inter-and motoneurons controlling head posture and flight steering in the blowfly Calliphora , 1988 .

[47]  R Hengstenberg,et al.  Flight control circuits in the nervous system of the fly: convergence of visual and mechanosensory pathways onto motoneurons of steering muscles , 1988 .

[48]  John B. Thomas,et al.  The Drosophila Giant Fiber System , 1984 .

[49]  D. Smith,et al.  The fine structure of haltere sensilla in the blowfly Calliphora erythrocephala (Meig.), with scanning electron microscopic observations on the haltere surface. , 1969, Tissue & cell.