Multiple teleportation via partially entangled GHZ state

Quantum teleportation is important for quantum communication. We propose a protocol that uses a partially entangled Greenberger–Horne–Zeilinger (GHZ) state for single hop teleportation. Quantum teleportation will succeed if the sender makes a Bell state measurement, and the receiver performs the Hadamard gate operation, applies appropriate Pauli operators, introduces an auxiliary particle, and applies the corresponding unitary matrix to recover the transmitted state.We also present a protocol to realize multiple teleportation of partially entangled GHZ state without an auxiliary particle. We show that the success probability of the teleportation is always 0 when the number of teleportations is odd. In order to improve the success probability of a multihop, we introduce the method used in our single hop teleportation, thus proposing a multiple teleportation protocol using auxiliary particles and a unitary matrix. The final success probability is shown to be improved significantly for the method without auxiliary particles for both an odd or even number of teleportations.

[1]  Luca Marinatto,et al.  WHICH KIND OF TWO-PARTICLE STATES CAN BE TELEPORTED THROUGH A THREE-PARTICLE QUANTUM CHANNEL? , 2000 .

[2]  Xiaowei Deng,et al.  Demonstration of eight-partite two-diamond shape cluster state for continuous variables , 2013 .

[3]  Ya-Fei Yu,et al.  Entanglement concentration for a non-maximally entangled four-photon cluster state , 2014 .

[4]  Ting Gao Quantum logic networks for probabilistic and controlled teleportation of unknown quantum states , 2003 .

[5]  M. Suhail Zubairy,et al.  Quantum teleportation of an entangled state , 2000 .

[6]  Jian-Wei Pan,et al.  Quantum teleportation of multiple degrees of freedom of a single photon , 2015, Nature.

[7]  Subhashish Banerjee,et al.  Quantification of entanglement of teleportation in arbitrary dimensions , 2014, Quantum Inf. Process..

[8]  Zhi-Xi Wang,et al.  Experimental detection of quantum entanglement , 2013 .

[9]  Daowen Qiu,et al.  Three-step semiquantum secure direct communication protocol , 2014, Science China Physics, Mechanics & Astronomy.

[10]  Marek Zukowski,et al.  Experimental quantum teleportation of arbitrary quantum states , 1998 .

[11]  Zhu Shi-Qun,et al.  Probabilistic Teleportation of n-Particle Statevia n Pairs of Entangled Particles , 2005 .

[12]  Dong Yang,et al.  Experimental free-space quantum teleportation , 2010 .

[13]  Fuguo Deng,et al.  Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement , 2005, quant-ph/0501129.

[14]  Sheng-Tzong Cheng,et al.  Quantum communication for wireless wide-area networks , 2005, IEEE J. Sel. Areas Commun..

[15]  M. Koashi,et al.  Concentration and purification scheme for two partially entangled photon pairs , 2001, quant-ph/0101042.

[16]  Xutao Yu,et al.  Partially entangled states bridge in quantum teleportation , 2014 .

[17]  Anna Zalewska,et al.  Oxidative Modification in the Salivary Glands of High Fat-Diet Induced Insulin Resistant Rats , 2017, Front. Physiol..

[18]  Xu-Tao Yu,et al.  Distributed wireless quantum communication networks , 2013 .

[19]  Shibin Zhang,et al.  Deterministic secure quantum communication and authentication protocol based on three-particle W state and quantum one-time pad , 2014 .

[20]  Jian-Wei Pan,et al.  Experimental entanglement purification of arbitrary unknown states , 2003, Nature.

[21]  Xutao Yu,et al.  Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation , 2014 .

[22]  Goutam Paul,et al.  Three-particle hyper-entanglement: teleportation and quantum key distribution , 2015, Quantum Inf. Process..

[23]  Xutao Yu,et al.  Quantum information transmission in the quantum wireless multihop network based on Werner state , 2015 .

[24]  Lan Zhou,et al.  Two-step complete polarization logic Bell-state analysis , 2014, Scientific Reports.

[25]  Markus Aspelmeyer,et al.  Experimental realization of freely propagating teleported qubits , 2003, Nature.

[26]  Jian-Wei Pan,et al.  Quantum teleportation and entanglement distribution over 100-kilometre free-space channels , 2012, Nature.

[27]  Jian-Wei Pan,et al.  Entanglement purification for quantum communication , 2000, Nature.

[28]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[29]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[30]  Gustavo Rigolin,et al.  Improving the efficiency of single and multiple teleportation protocols based on the direct use of partially entangled states , 2012, 1207.3048.

[31]  Yu-Bo Sheng,et al.  Complete hyperentangled-Bell-state analysis for quantum communication , 2010, 1103.0230.

[32]  Mu-Sheng Jiang,et al.  Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices , 2014, Frontiers of Physics.

[33]  Lan Zhou,et al.  Two-step entanglement concentration for arbitrary electronic cluster state , 2013, Quantum Inf. Process..

[34]  Pakhshan Espoukeh,et al.  Quantum teleportation through noisy channels with multi-qubit GHZ states , 2014, Quantum Inf. Process..

[35]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[36]  Bo Zhao,et al.  Experimental quantum teleportation of a two-qubit composite system , 2006, quant-ph/0609129.

[37]  Jian-Wei Pan,et al.  Experimental entanglement of six photons in graph states , 2006, quant-ph/0609130.

[38]  Meng Qin,et al.  Teleportation of an arbitrary two-qudit state based on the non-maximally four-qudit cluster state , 2008 .

[39]  Shengmei Zhao,et al.  Efficient entanglement concentration for arbitrary less-entangled NOON states , 2012, Quantum Information Processing.

[40]  Zhong-Xiao Man,et al.  Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHZ states , 2007 .

[41]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[42]  Bin Gu Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics , 2012 .

[43]  Fengli Yan,et al.  Probabilistic teleportation via a non-maximally entangled GHZ state , 2010 .

[44]  Guang-Can Guo,et al.  Teleportation of a two-particle entangled state via entanglement swapping , 2000 .

[45]  Gao Ting,et al.  Quantum Logic Networks for Probabilistic and Controlled Teleportation of Unknown Quantum States , 2004 .

[46]  Braunstein,et al.  Multipartite entanglement for continuous variables: A quantum teleportation network , 1999, Physical review letters.

[47]  B. Zheng,et al.  Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs , 2012, 1202.2190.

[48]  Monica Salerno,et al.  Orexin System: The Key for a Healthy Life , 2017, Front. Physiol..

[49]  Cheng-Zhi Peng,et al.  Observation of eight-photon entanglement , 2011, Nature Photonics.