NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species

This report documents the library of thermodynamic data used with the NASA Glenn computer program CEA (Chemical Equilibrium with Applications). This library, containing data for over 2000 solid, liquid, and gaseous chemical species for temperatures ranging from 200 to 20,000 K, is available for use with other computer codes as well. The data are expressed as least-squares coefficients to a seven-term functional form for C((sup o)(sub p)) (T) / R with integration constants for H (sup o) (T) / RT and S(sup o) (T) / R. The NASA Glenn computer program PAC (Properties and Coefficients) was used to calculate thermodynamic functions and to generate the least-squares coefficients. PAC input was taken from a variety of sources. A complete listing of the database is given along with a summary of thermodynamic properties at 0 and 298.15 K.

[1]  J. D. Swalen,et al.  Internal Barrier of Propylene Oxide from the Microwave Spectrum. I , 1957 .

[2]  H. T. Henderson,et al.  Heat sink capability of jet A fuel - Heat transfer and coking studies , 1971 .

[3]  D. Rayner,et al.  The first ionization potential of zirconium atoms determined by two laser, field‐ionization spectroscopy of high lying Rydberg series , 1986 .

[4]  M. W. Chase NIST–JANAF Thermochemical Tables for the Bromine Oxides , 1996 .

[5]  W. C. Martin,et al.  Energy levels of sodium Na I through Na XI , 1981 .

[6]  C. Moore,et al.  Infrared Spectrum and Vibrational Potential Function of Ketene and the Deuterated Ketenes , 1963 .

[7]  Marilyn E. Jacox,et al.  VIBRATIONAL AND ELECTRONIC ENERGY LEVELS OF POLYATOMIC TRANSIENT MOLECULES , 1994 .

[8]  F. Grønvold,et al.  Magnetite (Fe3O4) Heat capacity and thermodynamic properties from 5 to 350 K, low-temperature transition , 1969 .

[9]  A. P. Kudchadker,et al.  Ideal gas thermodynamic properties of the eight bromo‐ and lodomethanes , 1975 .

[10]  Yoshiki Ogawa,et al.  Tables of molecular vibrational frequencies , 1972 .

[11]  Branko Ruscic,et al.  Ionization Energy of Methylene Revisited: Improved Values for the Enthalpy of Formation of CH2 and the Bond Dissociation Energy of CH3 via Simultaneous Solution of the Local Thermochemical Network , 1999 .

[12]  F. Oetting Low‐Temperature Heat Capacity and Related Thermodynamic Functions of Propylene Oxide , 1964 .

[13]  R. Bise,et al.  Photodissociation spectroscopy and dynamics of the HCCO free radical , 1997 .

[14]  W. C. Lineberger,et al.  Bond Strengths of Ethylene and Acetylene , 1990 .

[15]  G. Herzberg,et al.  FINE STRUCTURE OF THE SCHUMANN-RUNGE BANDS NEAR THE CONVERGENCE LIMIT AND THE DISSOCIATION ENERGY OF THE OXYGEN MOLECULE , 1954 .

[16]  Takehiko Shimanouchi,et al.  Tables of molecular vibrational frequencies. Consolidated volume II , 1972 .

[17]  F. J. Zeleznik,et al.  SIMULTANEOUS LEAST-SQUARES APPROXIMATION OF A FUNCTION AND ITS FIRST INTEGRALS WITH APPLICATION TO THERMODYNAMIC DATA , 1961 .

[18]  C. Corliss,et al.  Atomic energy levels of the iron-period elements, potassium through nickel , 1985 .

[19]  P. Taylor,et al.  Revised Heat of Formation for Gaseous Boron: Basis Set Limit ab Initio Binding Energies of BF3 and BF , 1998 .

[20]  J. Pedley,et al.  Thermochemical Data for Gaseous Monoxides , 1983 .

[21]  S. A. Kudchadker,et al.  Thermodynamic Properties of Normal and Deuterated Naphthalenes , 1979 .

[22]  S. Kable,et al.  Near threshold dynamics and dissociation energy of the reaction H2CO → HCO + H , 1996 .

[23]  Donald T. Hawkins,et al.  Selected Values of the Thermodynamic Properties of the Elements , 1973 .

[24]  R. Butcher,et al.  Cyclopropane: Studies of some vibration-rotation Raman bands , 1973 .

[25]  T. Coplen Atomic Weights of the Elements , 2003 .

[26]  J. Berkowitz HEAT OF FORMATION OF THE CN RADICAL , 1962 .

[27]  Y. Lee,et al.  Photodissociation of H2S and the HS radical at 193.3 nm , 1991 .

[28]  B. Zwolinski,et al.  Ideal gas thermodynamic properties of phenol and cresols , 1978 .

[29]  G. K. Johnson The standard molar enthalpy of formation of SiF4(g) at 298.15 K by fluorine bomb calorimetry , 1986 .

[30]  J. L. Kinsey,et al.  High resolution spectroscopic detection of acetylene–vinylidene isomerization by spectral cross correlation , 1989 .

[31]  R. Belford,et al.  VCl4 Vapor Spectrum and Jahn‐Teller Splitting , 1962 .

[32]  Vibrational frequencies of toluene-d5 , 1975 .

[33]  M. Allendorf,et al.  Thermochemistry of Molecules in the B−N−Cl−H System: Ab Initio Predictions Using the BAC-MP4 Method , 1997 .

[34]  J. Chao,et al.  Ideal gas thermodynamic properties of propanone and 2‐butanone , 1976 .

[35]  R. Khanna,et al.  Vibrational infrared and raman spectra of dicyanoacetylene , 1987 .

[36]  W. C. Martin,et al.  A Compilation of Energy Levels and Wavelengths for the Spectrum of Neutral Beryllium (Be I) , 1997 .

[37]  V. A. Medvedev,et al.  Thermodynamic properties of individual substances , 1982 .

[38]  L. B. Pankratz,et al.  Thermodynamic properties of copper and its inorganic compounds , 1973 .

[39]  H. Dreizler,et al.  Mikrowellenspektrum, Hinderungspotential der internen Rotation und Dipolmoment des Toluols , 1967 .

[40]  H. Schaefer,et al.  The structure and stability of BH5. Does correlation make it a stable molecule? Qualitative changes at high levels of theory , 1994 .

[41]  S. Bauer,et al.  Thermochemistry of the Boranes , 1998 .

[42]  J. A. Manion Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons , 2002 .

[43]  Branko Ruscic,et al.  On the Enthalpy of Formation of Hydroxyl Radical and Gas-Phase Bond Dissociation Energies of Water and Hydroxyl , 2002 .

[44]  Martin A. Reno,et al.  Coefficients for calculating thermodynamic and transport properties of individual species , 1993 .

[45]  Sanford Gordon,et al.  Computer program for calculating and fitting thermodynamic functions , 1992 .

[46]  C. Bauschlicher,et al.  Ab initio calculations on the positive ions of the alkaline-earth oxides, fluorides, and hydroxides , 1986 .

[47]  M. B. Fegley The Thermodynamic Properties of Silicon Oxynitride , 1981 .

[48]  W. C. Martin,et al.  Energy Levels of Silicon, Si I through Si XIV , 1983 .

[49]  A. P. Kudchadker,et al.  Erratum: Ideal gas thermodynamic properties of eight Bromo− and Iodomethanes , 1976 .

[50]  M. W. Chase NIST‐JANAF Thermochemical Tables for Oxygen Fluorides , 1996 .

[51]  C. W. Patterson,et al.  Infrared spectrum and potential constants of silicon tetrafluoride , 1982 .

[52]  G. Fogarasi,et al.  Quantum chemical coupled cluster study of the structure and spectra of the ground and first excited states of the ketenyl radical , 1996 .

[53]  Martin A. Reno,et al.  Thermodynamic Data for Fifty Reference Elements , 1993 .

[54]  J. Chao,et al.  Ideal gas thermodynamic properties of methanoic and ethanoic acids , 1978 .

[55]  J. W. Hudgens,et al.  Structural and Thermochemical Properties of Hydroxymethyl (CH2OH) Radicals and Cations Derived from Observations of B̃ 2A‘(3p) ← X̃ 2A‘‘ Electronic Spectra and from ab Initio Calculations , 1996 .

[56]  O. V. Dorofeeva,et al.  Thermodynamic properties of linear carbon chain molecules with conjugated triple bonds , 1991 .

[57]  J. Keenan,et al.  Steam tables : thermodynamic properties of water, including vapor, liquid, and solid phases (English units) , 1969 .

[58]  K. Marsh,et al.  Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C1 to C4. Part 2. Ideal Gas Properties , 1986 .

[59]  W. Tsang The stability of alkyl radicals , 1985 .

[60]  Jack Sugar,et al.  Energy levels of copper, Cu I through Cu XXIX , 1990 .

[61]  R. Bartlett,et al.  Electron correlation effects on the ground-state structure and stability of triborane(9) , 1989 .

[62]  C. B. Alcock,et al.  Thermodynamic Properties of the Group IA Elements , 1993 .

[63]  H. Schaefer,et al.  The tetramer of borane and its heavier valence-isoelectronic analogs: M4H12 with M = B, Al, and Ga , 1993 .

[64]  J. Lyman,et al.  Thermochemical Properties of Si2F6 and SiF4 in Gas and Condensed Phases , 2001 .

[65]  W. D. Good,et al.  Enthalpies of Combustion of Ramjet Fuels , 1979 .

[66]  C. Bauschlicher,et al.  On the dissociation energy of BH , 1990 .

[67]  V. McKoy,et al.  Rotationally resolved threshold photoelectron spectra of OH and OD , 1992 .

[68]  J. Cox Notation for states and processes, significance of the word standard in chemical thermodynamics, and remarks on commonly tabulated forms of thermodynamic functions , 1982 .

[69]  C. E. Moore Selected tables of atomic spectra - A: Atomic energy levels - Second edition - B: Multiplet table; N I, N II, N III. Data derived from the analyses of optical spectra , 1965 .

[70]  Charlotte E. Moore,et al.  Selected tables of atomic spectra , 1980 .

[71]  M. W. Chase,et al.  NIST-JANAF Thermochemical Tables Fourth Edition , 1998 .

[72]  J. Troe,et al.  Thermodynamic properties of benzyl radicals: enthalpy of formation from toluene, benzyl iodide, and dibenzyl dissociation equilibria , 1990 .

[73]  Sanford Gordon,et al.  Thermodynamic Data to 20,000 K For Monatomic Gases , 1999 .

[74]  Curt Ingram,et al.  Comparative testing of Russian kerosene and RP-1 , 1995 .

[75]  Jürgen Troe,et al.  Thermal decomposition of toluene: a comparison of thermal and laser-photochemical activation experiments , 1988 .

[76]  Bonnie J. Mcbride,et al.  Experimental verification of the thermodynamic properties for a jet-A fuel , 1988 .

[77]  Shinnosuke Saëki,et al.  Infrared intensities of acetonitrile , 1984 .

[78]  D. A. Ramsay,et al.  Microwave Spectra, Dipole Moments, and Torsional Potential Function ofcis-Glyoxal andcis-Glyoxal-d1 , 1997 .

[79]  J. Chao,et al.  Ideal gas thermodynamic properties of ethylene and propylene , 1975 .

[80]  W. C. Lineberger,et al.  Binding Energies in Atomic Negative Ions : II , 2022 .

[81]  Sanford Gordon,et al.  CAP: A Computer Code for Generating Tabular Thermodynamic Functions from NASA Lewis Coefficients , 2002 .

[82]  A. J. Downs,et al.  The molecular structure of tetraborane(10) in the gas phase as determined by a joint analysis of electron-diffraction and microwave data , 1981 .

[83]  J. Nibler,et al.  Structure of dicyanoacetylene by electron diffraction and coherent rotational Raman spectroscopy , 1989 .

[84]  S. Todd Low Temperature Heat Capacities and Entropies at 298.16°K. of Magnesium Orthotitanate and Magnesium Dititanate , 1952 .

[85]  Balakrishnan,et al.  Dissociation energy of the hydrogen molecule. , 1992, Physical review letters.

[86]  V. S. Jorish,et al.  Thermodynamic properties of twenty-one monocyclic hydrocarbons , 1986 .

[87]  B. Zwolinski,et al.  Ideals gas thermodynamic properties and isomerization of n‐butane and isobutane , 1975 .

[88]  L. Pankratz,et al.  Thermodynamic Properties of Sulfides , 1987 .

[89]  D. D. Wagman,et al.  The NBS tables of chemical thermodynamic properties : selected values for inorganic and C1 and C2 organic substances in SI units , 1982 .

[90]  O. V. Dorofeeva,et al.  NIST-JANAF Thermochemical Tables. I. Ten Organic Molecules Related to Atmospheric Chemistry , 2001 .

[91]  V. S. Iorish,et al.  Thermodynamic Properties of Alkali Metal Hydroxides. Part 1. Lithium and Sodium Hydroxides , 1996 .

[92]  T. B. Malloy,et al.  Periodic potential functions for pseudorotation and internal rotation , 1972 .

[93]  V. S. Iorish,et al.  Thermodynamic Properties of Alkali Metal Hydroxides. Part II. Potassium, Rubidium, and Cesium Hydroxides , 1997 .

[94]  B. Mcbride,et al.  FORTRAN 4 computer program for calculation of thermodynamic and transport properties of complex chemical systems , 1973 .

[95]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[96]  C. E. Moore Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra , 1970 .

[97]  L. Pankratz Thermodynamic Properties of Halides , 1984 .

[98]  Sanford Gordon,et al.  Finite Area Combustor Theoretical Rocket Performance , 1988 .

[99]  Sanford Gordon,et al.  CET93 and CETPC: An interim updated version of the NASA Lewis computer program for calculating complex chemical equilibria with applications , 1994 .

[100]  I. Dubois The absorption spectrum of the free SiH2 radical , 1968 .

[101]  H. W. Woolley Ideal Gas Thermodynamic Functions For Water , 1987, Journal of Research of the National Bureau of Standards.

[102]  A. M. Ferguson,et al.  A combined empirical-ab initio determination of the general harmonic force field of ketene , 1987 .

[103]  R. Butcher,et al.  The Raman spectrum of allene , 1973 .

[104]  W. C. Martin,et al.  Wavelengths and Energy Level Classifications for the Spectra of Aluminum (Ali through Alxiii) , 1991 .

[105]  L. J. Radziemski,et al.  Energy levels of neutral atomic uranium (Ui) , 1976 .

[106]  M. Kolbuszewski An ab initio calculation of the rovibronic energies of the BH2 molecule , 1996 .

[107]  W. Gordy,et al.  The Microwave Spectrum and Structure of Methyl Acetylene , 1950 .

[108]  S. Gibson,et al.  Photoionization of the amidogen radical , 1985 .

[109]  C. J. Howard,et al.  Rate coefficient temperature dependence and branching ratio for the OH+ClO reaction , 1984 .

[110]  U. Litzén,et al.  Spectrum and term system of neutral nickel, Ni I , 1993 .

[111]  J. B. Pedley,et al.  Thermochemical data of organic compounds , 1986 .

[112]  G. E. Leroi,et al.  INFRARED SPECTRUM OF DEUTERIUM SULFIDE. , 1967 .

[113]  A. G.,et al.  Atomic Energy Levels as derived from the Analyses of Optical Spectra , 1948, Nature.

[114]  W. Goddard,et al.  Singlet-triplet energy gaps in chlorine-substituted methylenes and silylenes , 1990 .

[115]  H. Niki,et al.  Double H-bridged and single H-bridged diboryl radicals , 1990 .

[116]  H. F. Stimson Some Precise Measurements of the Vapor Pressure of Water in the Range From 25 to 100 °C. , 1969, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[117]  S. Gordon,et al.  Thermodynamic and transport combustion properties of hydrocarbons with air. Part 1: Properties in SI units , 1982 .

[118]  B. Zwolinski,et al.  Thermodynamic properties of normal and deuterated methanols , 1977 .

[119]  W. C. Martin,et al.  Energy Levels of Sulfur, S I Through S XVI , 1990 .

[120]  F. J. Zeleznik,et al.  Ideal gas thermodynamic properties for the phenyl, phenoxy, and o-biphenyl radicals , 1985 .

[121]  A. Rauk,et al.  Structures, barriers for rotation and inversion, vibrational frequencies, and thermodynamic functions of ethyl, α‐fluoroethyl, and α,α‐difluoroethyl radicals: An ab inito study , 1990 .

[122]  J. R. Villarreal,et al.  Raman spectra and internal rotation of methylcyclopropane and its analogs , 1975 .

[123]  J. Sugar,et al.  Energy levels of germanium, Ge I through Ge XXXII , 1993 .

[124]  J. Plíva,et al.  The spectrum of benzene in the 3-μm region: The ν12 fundamental band ☆ , 1982 .

[125]  E. Hirota,et al.  Vibronic bands of the CCH radical observed by infrared diode laser kinetic spectroscopy , 1988 .

[126]  J.H.S. Green,et al.  The far-infrared spectra and thermodynamic properties of vanadium and titanium tetrachlorides , 1966 .

[127]  W. C. Martin,et al.  Energy Levels of Phosphorus, P i through P xv , 1985 .

[128]  I. Barin,et al.  Thermochemical properties of inorganic substances , 1973 .

[129]  J. Sugar,et al.  Energy Levels of Krypton, Kr I through Kr XXXVI , 1991 .

[130]  Wesley D. Allen,et al.  The heat of formation of NCO , 1993 .

[131]  J. Plíva,et al.  The ν13 fundamental band of benzene , 1983 .

[132]  J. Duncan Ground state rotational parameters and fundamental vibration frequencies for isotopically substituted diboranes , 1985 .

[133]  L. Pankratz,et al.  Thermodynamic properties of elements and oxides , 1982 .

[134]  D. Gutman,et al.  Kinetics and Thermochemistry of the CH3CO Radical: Study of the CH3CO + HBr → CH3CHO + Br Reaction. , 1992 .

[135]  Thermodynamic Properties of Ammonia as an Ideal Gas. , 1968, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[136]  R. Bartlett,et al.  Early stages of diborane pyrolysis: a computational study , 1989 .

[137]  W. C. Martin,et al.  A Compilation of Energy Levels and Wavelengths for the Spectrum of Singly‐Ionized Oxygen (O II) , 1993 .

[138]  J. Sugar,et al.  Energy Levels of Zinc, Zn I through Zn XXX , 1995 .

[139]  W. C. Martin,et al.  Wavelengths and Energy Level Classifications of Magnesium Spectra for All Stages of Ionization (Mg I through Mg XII) , 1991 .

[140]  S. Stolte,et al.  Raman overtone spectroscopy of ethylene , 1985 .

[141]  P. Jensen,et al.  A refined potential surface for the X̃ 3B1 electronic state of methylene CH2 , 1983 .

[142]  E. R. Cohen,et al.  The 1986 CODATA Recommended Values Of the Fundamental Physical Constants , 1987, Journal of Research of the National Bureau of Standards.

[143]  J. Chao,et al.  Ideal Gas Thermodynamic Properties of Ethane and Propane , 1973 .

[144]  Sanford Gordon,et al.  Computer program for calculation of complex chemical equilibrium compositions , 1972 .

[145]  J. Sugar,et al.  Energy Levels of Molybdenum, Mo I through Mo XLII , 1988 .

[146]  R. Hauge,et al.  Matrix isolation studies of the reactions of silicon atoms with molecular hydrogen. The infrared spectrum of silylene , 1985 .

[147]  Jan M. L. Martin Benchmark ab initio calculations of the total atomization energies of the first-row hydrides AHn (A = LiF) , 1997 .

[148]  P. Armentrout,et al.  Collision‐induced dissociation of CS+2. Heat of formation of the CS radical , 1991 .

[149]  M. Mckee Estimation of heats of formation of boron hydrides from ab initio energies , 1990 .

[150]  P. D. Desai Thermodynamic Properties of Manganese and Molybdenum , 1987 .

[151]  K. P. Lim,et al.  Experiments and Theory on the Thermal Decomposition of CHCl3 and the Reactions of CCl2 , 1997 .

[152]  Allyn M. Munger See Appendix C. , 1963 .