Improved decoding of affine-variety codes

Abstract General error locator polynomials are polynomials able to decode any correctable syndrome for a given linear code. Such polynomials are known to exist for all cyclic codes and for a large class of linear codes. We provide some decoding techniques for affine-variety codes using some multidimensional extensions of general error locator polynomials. We prove the existence of such polynomials for any correctable affine-variety code and hence for any linear code. We propose two main different approaches, that depend on the underlying geometry. We compute some interesting cases, including Hermitian codes. To prove our coding theory results, we develop a theory for special classes of zero-dimensional ideals, that can be considered generalizations of stratified ideals. Our improvement with respect to stratified ideals is twofold: we generalize from one variable to many variables and we introduce points with multiplicities.

[1]  Eleonora Guerrini,et al.  FGLM-Like Decoding: from Fitzpatrick's Approach to Recent Developments , 2009, Gröbner Bases, Coding, and Cryptography.

[2]  Chong-Dao Lee,et al.  Algebraic Decoding of a Class of Binary Cyclic Codes Via Lagrange Interpolation Formula , 2010, IEEE Transactions on Information Theory.

[3]  A. Seidenberg Constructions in algebra , 1974 .

[4]  Philippe Loustaunau,et al.  On the Decoding of Cyclic Codes Using Gröbner Bases , 1997, Applicable Algebra in Engineering, Communication and Computing.

[5]  Olav Geil,et al.  On codes from norm-trace curves , 2003 .

[6]  Jian-Hong Chen,et al.  Unusual general error locator polynomial for the (23, 12, 7) golay code , 2010, IEEE Communications Letters.

[7]  Jian-Hong Chen,et al.  Decoding Binary Cyclic Codes with Irreducible Generator Polynomials up to Actual Minimum Distance , 2010, IEEE Communications Letters.

[8]  M. Sala,et al.  A commutative algebra approach to linear codes , 2009 .

[9]  Emmanuela Orsini,et al.  General Error Locator Polynomials for Binary Cyclic Codes With $t \le 2$ and $n < 63$ , 2007, IEEE Transactions on Information Theory.

[10]  Michael Kalkbrener Solving systems of algebraic equations by using Gröbner bases , 1987, EUROCAL.

[11]  M. Sala,et al.  Correcting errors and erasures via the syndrome variety , 2005 .

[12]  Tor Helleseth,et al.  Use of Grobner bases to decode binary cyclic codes up to the true minimum distance , 1994, IEEE Trans. Inf. Theory.

[13]  W. T. Tutte,et al.  Encyclopedia of Mathematics and its Applications , 2001 .

[14]  Teo Mora,et al.  Solving Polynomial Equation Systems II: Macaulay's Paradigm and Gröbner Technology , 2005 .

[15]  Gary Salazar,et al.  An improvement of the Feng-Rao bound on minimum distance , 2006, Finite Fields Their Appl..

[16]  H. Niederreiter,et al.  Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .

[17]  Rudolf Lide,et al.  Finite fields , 1983 .

[18]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[19]  J. Fitzgerald,et al.  Decoding Affine Variety Codes Using Gröbner Bases , 1998, Des. Codes Cryptogr..

[20]  A. B. Cooper Finding BCH error locator polynomials in one step , 1991 .

[21]  Tor Helleseth,et al.  Algebraic decoding of cyclic codes: A polynomial ideal point of view , 1993 .

[22]  Patrizia M. Gianni,et al.  Properties of Gröbner bases under specializations , 1987, EUROCAL.

[23]  A. Cooper,et al.  Toward a New Method of Decoding Algebraic Codes Using Groebner Bases , 1993 .

[24]  Jean-Charles Faugère,et al.  On the decoding of binary cyclic codes with the Newton identities , 2009, J. Symb. Comput..

[25]  Robert F. Lax Generic interpolation polynomial for list decoding , 2012, Finite Fields Their Appl..

[26]  Massimo Caboara,et al.  The Chen-Reed-Helleseth-Truong Decoding Algorithm and the Gianni-Kalkbrenner Gröbner Shape Theorem , 2002, Applicable Algebra in Engineering, Communication and Computing.

[27]  Stanislav Bulygin,et al.  Bounded distance decoding of linear error-correcting codes with Gröbner bases , 2009, J. Symb. Comput..

[28]  Bruno Buchberger,et al.  The Construction of Multivariate Polynomials with Preassigned Zeros , 1982, EUROCAM.

[29]  Emmanuela Orsini,et al.  Decoding Cyclic Codes: the Cooper Philosophy , 2009, Gröbner Bases, Coding, and Cryptography.