Actuation development and evaluation for INSTAR: inertially stabilized rifle

In the use of piezoelectric actuators, it is a clear choice to use stack (or d33 mode) architectures when very high force is required or benders (or d31 mode) architectures when very high displacements are needed. However, the choice isn't as clear for applications that need simultaneously a moderate force and displacement. This paper presents one such application, INSTAR that is posed with this dilemma. INSTAR is a novel rifle system that has an inertially stabilized barrel via an active suspension based on piezoelectric actuation. While the frequency required for this application was low (~10Hz), the displacement (± 200 to 400 microns) and the force (22-45 N) are moderate. Two very different actuation approaches were developed, modeled, fabricated and experimentally validated within the INSTAR demonstration platform: 1) a d31 approach based on the Recurve architecture with focus on generating higher forces than is common for d31 actuators and 2) a d33 approach based upon a compliant mechanism designed using topology optimization with focus on providing more amplified strain than is common for d33 actuators. Both approaches were successful in meeting the INSTAR requirements, but each had its on advantages and disadvantages.

[1]  Seiji Chonan,et al.  Soft-handling gripper driven by piezoceramic bimorph strips , 1996 .

[2]  E.T. Falangas,et al.  Controlling plate vibrations using piezoelectric actuators , 1994, IEEE Control Systems.

[3]  D. Zimcik,et al.  Active Cabin Noise and Vibration Control for Turboprop Aircraft Using Multiple Piezoelectric Actuators , 2000 .

[4]  C. Fuller,et al.  Experiments on active control of structurally radiated sound using multiple piezoceramic actuators , 1990 .

[5]  A Blanguernon,et al.  Active control of a beam using a piezoceramic element , 1999 .

[6]  Shan-Min Swei,et al.  Active actuation and control of a miniaturized suspension structure in hard-disk drives using a polyvinylidene-fluoride actuator and sensor , 2000 .

[7]  Brian Culshaw,et al.  Smart Structures and Materials , 2004 .

[8]  Nesbitt W. Hagood,et al.  Damping of structural vibrations with piezoelectric materials and passive electrical networks , 1991 .

[9]  R. Bryant,et al.  Thin-layer composite unimorph ferroelectric driver and sensor properties , 1998 .

[10]  Seung Eek Eagle Park,et al.  High-authority telescoping actuators with single-crystal piezoelectric materials , 2000, Smart Structures.

[11]  Steven R. Hall,et al.  Piezoelectric actuators for helicopter rotor control , 1990 .

[12]  S. Hall,et al.  Development of a piezoelectric servoflap for helicopter rotor control , 1996 .

[13]  E. Crawley,et al.  Detailed models of piezoceramic actuation of beams , 1989 .

[14]  Gary H. Koopmann,et al.  Inertial piezoceramic actuators for smart structures , 1995, Smart Structures.

[15]  Chris R. Fuller,et al.  Active control of interior noise in a business jet using piezoceramic actuators , 1994 .

[16]  Chris R. Fuller,et al.  Foam-PVDF smart skin for active control of sound , 1996, Smart Structures.

[17]  Steven R. Hall,et al.  Design of a high-efficiency discrete servo-flap actuator for helicopter rotor control , 1997, Smart Structures.

[18]  M. Frecker,et al.  Optimal Design and Experimental Validation of Compliant Mechanical Amplifiers for Piezoceramic Stack Actuators , 2000 .

[19]  Mark A. Hopkins,et al.  Effect of synthetic jet arrays on boundary layer control , 1999, Smart Structures.

[20]  Frank Claeyssen,et al.  New amplified piezoelectric actuator for precision positioning and active damping , 1997, Smart Structures.

[21]  Leslie E. Cross,et al.  CRESCENT: a novel piezoelectric bending actuator , 1997, Smart Structures.

[22]  K. Uchino,et al.  The "cymbal" electromechanical actuator , 1996, ISAF '96. Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics.

[23]  Nesbitt W. Hagood,et al.  Modelling of Piezoelectric Actuator Dynamics for Active Structural Control , 1990 .

[24]  Mary Frecker,et al.  Topology optimization of compliant mechanical amplifiers for piezoelectric actuators , 2000 .

[25]  Terry D. Hinnerichs,et al.  Vibration Control for Precision Manufacturing Using Piezoelectric Actuators , 1995 .

[26]  Jennifer Heeg,et al.  An analytical and experimental investigation of flutter suppression via piezoelectric actuation , 1992 .

[27]  Victor Giurgiutiu,et al.  Design of displacement-amplified induced-strain actuators for maximum energy output , 1997 .

[28]  Kenji Uchino,et al.  Metal–Ceramic Composite Actuators , 1992 .

[29]  Ralph C. Smith,et al.  Modeling aspects concerning THUNDER actuators , 1999, Smart Structures.

[30]  Kenneth B. Lazarus,et al.  Induced strain actuation of isotropic and anisotropic plates , 1991 .

[31]  Ricardo A. Burdisso,et al.  Optimal Placement of Piezoelectric Actuators for Active Structural Acoustic Control , 1994 .

[32]  Harvey Thomas Banks,et al.  Evaluation criteria for THUNDER actuators , 1999, Smart Structures.

[33]  E. Crawley,et al.  Use of piezoelectric actuators as elements of intelligent structures , 1987 .

[34]  Friedrich K Straub,et al.  A feasibility study of using smart materials for rotor control , 1993 .

[35]  Gene H. Haertling,et al.  Rainbow actuators and sensors: a new smart technology , 1997, Smart Structures.

[36]  S. Hall,et al.  Design of a high efficiency, large stroke, electromechanical actuator , 1999 .

[37]  Inderjit Chopra,et al.  Actuation of trailing edge flap in a wing model using piezostack device , 1997 .

[38]  Dragan Damjanovic,et al.  Electrostrictive and Piezoelectric Materials for Actuator Applications , 1992 .

[39]  Diann Brei,et al.  Investigation of polymeric piezoelectric acoustic semi-circular transducers , 1998 .

[40]  Mohammad Noori,et al.  Experimental study of THUNDER: a new generation of piezoelectric actuators , 1999, Smart Structures.

[41]  Gene H. Haertling,et al.  Rainbow Ceramics-A New Type of Ultra-High-Displacement Actuator , 1994 .

[42]  Shiv P. Joshi,et al.  Preliminary design of smart structure fins for high-speed missiles , 1996, Smart Structures.

[43]  V. D. Kugel,et al.  Characterization of the linear and non-linear dynamic performance of RAINBOW actuator , 1996, ISAF '96. Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics.

[44]  Inderjit Chopra,et al.  Development And Hover Testing Of A Smart Trailing Edge Flap With A Piezo-Induced Bending-Torsion Coupled Actuator , 1996 .

[45]  G. Haertling,et al.  Temperature dependent characteristics of Cerambow actuators , 1996, ISAF '96. Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics.

[46]  B. Pokines,et al.  A smart material microamplification mechanism fabricated using LIGA , 1998 .

[47]  J. D. Ervin,et al.  Recurve piezoelectric-strain-amplifying actuator architecture , 1998 .

[48]  W.-W. Chiang,et al.  Piezoelectric strain rate sensor and actuator designs for active vibration control , 1991 .

[49]  Ron Barrett,et al.  BENCH-TOP CHARACTERIZATION OF AN ACTIVE ROTOR BLADE FLAP SYSTEM INCORPORATING C-BLOCK ACTUATORS , 1998 .

[50]  Nobuyuki Ohya,et al.  A compact and quick-response dynamic focusing lens , 1998 .

[51]  Diann Brei,et al.  Polymeric piezoelectric acoustic semicircular transducers , 1998, Smart Structures.

[52]  Friedrich K. Straub,et al.  Development of a piezoelectric actuator for trailing-edge flap control of rotor blades , 1999, Smart Structures.

[53]  Frank Claeyssen,et al.  Semipassive and semiactive vibration control using new amplified piezoelectric actuators , 1999, Smart Structures.

[54]  Mauro J. Atalla,et al.  Active structural acoustic control of a thick-walled cylindrical shell , 2000, Smart Structures.

[55]  Inderjit Chopra,et al.  Design, Fabrication and Testing of a Mach Scaled Rotor Model with Trailing-Edge Flaps , 1999 .

[56]  Matthew W. Hooker,et al.  Properties and performance of RAINBOW piezoelectric actuator stacks , 1997, Smart Structures.

[57]  Douglas K. Lindner,et al.  Development and demonstration of INSTAR: inertially stabilized rifle , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[58]  Manfred Kahn,et al.  High-authority telescoping actuators , 1999, Smart Structures.

[59]  Leslie E. Cross,et al.  Dynamic Characteristics of Rainbow Ceramics , 1995 .

[60]  Diann Brei,et al.  Force-deflection behavior of piezoelectric C-block actuator arrays , 1999 .

[61]  Friedrich K. Straub,et al.  Design and testing of a double X-frame piezoelectric actuator , 2000, Smart Structures.

[62]  Diann Brei,et al.  Quasi-Static Behavior of Individual C-Block Piezoelectric Actuators , 1997 .

[63]  James Douglas Ervin Design, characterization, and assessment of the recurve actuation architecture. , 1999 .

[64]  Diann Brei,et al.  Modeling and Study of the Quasi-Static Behavior of Piezoceramic Telescopic Actuation Architectures , 1999 .

[65]  John R. Hollenbeck,et al.  Fabrication and experimental characterization of d31 telescopic piezoelectric actuators , 2000, Smart Structures.

[66]  S. J. Kim,et al.  Optimal design of piezoactuators for active noise and vibration control , 1991 .

[67]  Dhananjay K. Samak,et al.  Design of high-force high-displacement actuators for helicopter rotors , 1994, Smart Structures.

[68]  Musa Jouaneh,et al.  Design and characterization of a low-profile micropositioning stage , 1996 .

[69]  Steven R. Hall,et al.  X-Frame-actuator servo-flap acuation system for rotor control , 1998, Smart Structures.

[70]  Michael Goldfarb,et al.  Design of a PZT-actuated proportional drum brake , 1999 .

[71]  Inderjit Chopra,et al.  Design and testing of a helicopter rotor model with smart trailing edge flaps , 1994 .

[72]  Inderjit Chopra,et al.  Development and validation of a refined piezostack-actuated trailing-edge flap actuator for a helicopter rotor , 1999, Smart Structures.