The lattice structure of chip firing games and related models

[1]  Jan van den Heuvel,et al.  Algorithmic Aspects of a Chip-Firing Game , 2001, Combinatorics, Probability and Computing.

[2]  Ha Duong Phan,et al.  The structure of Chip Firing Games and related models , 2000, math/0010315.

[3]  Eric Goles Ch.,et al.  Lattice Structure and Convergence of a Game of Cards , 2000, ArXiv.

[4]  Matthieu Latapy,et al.  Structure of some sand piles model , 2000, Theor. Comput. Sci..

[5]  Robert Cori,et al.  On the Sandpile Group of Dual Graphs , 2000, Eur. J. Comb..

[6]  C. Moore,et al.  The Computational Complexity of Sandpiles , 1998, cond-mat/9808183.

[7]  N. Biggs Algebraic Potential Theory on Graphs , 1997 .

[8]  Eric Goles Ch.,et al.  Universality of the Chip-Firing Game , 1997, Theor. Comput. Sci..

[9]  Ekkart Kindler,et al.  A Simplified Proof for a Self-Stabilizing Protocol: A Game of Cards , 1995, Inf. Process. Lett..

[10]  D. Dhar,et al.  Algebraic aspects of Abelian sandpile models , 1994, cond-mat/9408022.

[11]  Eric Goles Ch.,et al.  Games on Line Graphs and Sand Piles , 1993, Theor. Comput. Sci..

[12]  Shing-Tsaan Huang,et al.  Leader election in uniform rings , 1993, TOPL.

[13]  László Lovász,et al.  Chip-firing Games on Graphs , 1991, Eur. J. Comb..

[14]  Satya N. Majumdar,et al.  Abelian sandpile model on the bethe lattice , 1990 .

[15]  Tang,et al.  Self-organized criticality. , 1988, Physical review. A, General physics.

[16]  Ha Duong Phan,et al.  About the Dynamics of Some Systems Based on Integer Partitions and Compositions , 2000 .

[17]  Norman Biggs,et al.  Chip-Firing and the Critical Group of a Graph , 1999 .

[18]  Thomas Brylawski,et al.  The lattice of integer partitions , 1973, Discret. Math..