Quantum Homomorphic Encryption for Circuits of Low T-gate Complexity

Fully homomorphic encryption is an encryption method with the property that any computation on the plaintext can be performed by a party having access to the ciphertext only. Here, we formally define and give schemes for quantum homomorphic encryption, which is the encryption of quantum information such that quantum computations can be performed given the ciphertext only. Our schemes allow for arbitrary Clifford group gates, but become inefficient for circuits with large complexity, measured in terms of the non-Clifford portion of the circuit (we use the “\(\pi /8\)” non-Clifford group gate, also known as the \(\mathsf{T}\)-gate).

[1]  Daniele Micciancio Lattice-Based Cryptography , 2011, Encyclopedia of Cryptography and Security.

[2]  Taher El Gamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, IEEE Trans. Inf. Theory.

[3]  Adam D. Smith,et al.  Authentication of quantum messages , 2001, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[4]  Andris Ambainis,et al.  Private quantum channels , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[5]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[6]  Hoi-Kwong Lo,et al.  Is Quantum Bit Commitment Really Possible? , 1996, ArXiv.

[7]  R. Prevedel,et al.  Quantum computing on encrypted data , 2013, Nature Communications.

[8]  Avinatan Hassidim,et al.  Secure Multiparty Quantum Computation with (Only) a Strict Honest Majority , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[9]  Louis Salvail,et al.  Actively Secure Two-Party Evaluation of Any Quantum Operation , 2012, CRYPTO.

[10]  Moti Yung,et al.  Non-interactive cryptocomputing for NC/sup 1/ , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[11]  Vinod Vaikuntanathan,et al.  Computing Blindfolded: New Developments in Fully Homomorphic Encryption , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[12]  Lin Chen,et al.  A quantum approach to homomorphic encryption , 2014, Scientific Reports.

[13]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[14]  Dan Boneh,et al.  Evaluating 2-DNF Formulas on Ciphertexts , 2005, TCC.

[15]  Mark Zhandry,et al.  Random Oracles in a Quantum World , 2010, ASIACRYPT.

[16]  Peter Selinger,et al.  Quantum circuits of T-depth one , 2012, ArXiv.

[17]  Dominic Mayers Unconditionally secure quantum bit commitment is impossible , 1997 .

[18]  Oded Regev,et al.  Lattice-Based Cryptography , 2006, CRYPTO.

[19]  Louis Salvail,et al.  Secure Two-Party Quantum Evaluation of Unitaries against Specious Adversaries , 2010, CRYPTO.

[20]  M. Mosca,et al.  A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[21]  Joseph Fitzsimons,et al.  Composable Security of Delegated Quantum Computation , 2013, ASIACRYPT.

[22]  Yael Tauman Kalai,et al.  Reusable garbled circuits and succinct functional encryption , 2013, STOC '13.

[23]  Peter P Rohde,et al.  Quantum walks with encrypted data. , 2012, Physical review letters.

[24]  Ronald L. Rivest,et al.  ON DATA BANKS AND PRIVACY HOMOMORPHISMS , 1978 .

[25]  Charles Herder BLIND QUANTUM COMPUTATION , 2012 .

[26]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[27]  Lin Chen,et al.  A quantum approach to fully homomorphic encryption , 2014, ArXiv.

[28]  Vinod Vaikuntanathan,et al.  Efficient Fully Homomorphic Encryption from (Standard) LWE , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[29]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[30]  M. Knörnschild,et al.  Corrigendum: Bats host major mammalian paramyxoviruses , 2014, Nature Communications.

[31]  Chong Xiang,et al.  Indistinguishability and semantic security for quantum encryption scheme , 2012, Photonics Asia.

[32]  D. Leung,et al.  Methodology for quantum logic gate construction , 2000, quant-ph/0002039.

[33]  Oded Regev,et al.  On lattices, learning with errors, random linear codes, and cryptography , 2005, STOC '05.

[34]  Debbie W. Leung,et al.  Unified derivations of measurement-based schemes for quantum computation , 2005 .

[35]  Ron Rothblum,et al.  Homomorphic Encryption: from Private-Key to Public-Key , 2011, Electron. Colloquium Comput. Complex..

[36]  Elad Eban,et al.  Interactive Proofs For Quantum Computations , 2017, 1704.04487.

[37]  Dmitri Maslov,et al.  Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits , 2012, Physical review letters.

[38]  Dominique Unruh,et al.  Quantum Proofs of Knowledge , 2012, IACR Cryptol. ePrint Arch..

[39]  Craig Gentry,et al.  i-Hop Homomorphic Encryption and Rerandomizable Yao Circuits , 2010, IACR Cryptol. ePrint Arch..

[40]  Craig Gentry,et al.  Fully Homomorphic Encryption over the Integers , 2010, EUROCRYPT.

[41]  A. Broadbent Delegating private quantum computations12 , 2015, 1506.01328.

[42]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[43]  Jonathan Katz,et al.  Introduction to Modern Cryptography: Principles and Protocols , 2007 .

[44]  Li Yu,et al.  Limitations on information theoretically secure quantum homomorphic encryption , 2014, ArXiv.

[45]  Pascal Paillier,et al.  Public-Key Cryptosystems Based on Composite Degree Residuosity Classes , 1999, EUROCRYPT.

[46]  John Watrous,et al.  Zero-knowledge against quantum attacks , 2005, STOC '06.

[47]  Craig Gentry,et al.  A fully homomorphic encryption scheme , 2009 .

[48]  Mark Zhandry,et al.  Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World , 2013, CRYPTO.

[49]  Silvio Micali,et al.  Probabilistic Encryption , 1984, J. Comput. Syst. Sci..

[50]  Andrew M. Childs Secure assisted quantum computation , 2001, Quantum Inf. Comput..

[51]  Mark Zhandry,et al.  How to Construct Quantum Random Functions , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[52]  Keisuke Tanaka,et al.  Quantum Public-Key Cryptosystems , 2000, CRYPTO.

[53]  Gus Gutoski,et al.  Quantum one-time programs , 2013, IACR Cryptol. ePrint Arch..

[54]  Craig Gentry,et al.  Fully homomorphic encryption using ideal lattices , 2009, STOC '09.

[55]  Takeshi Koshiba Security Notions for Quantum Public-Key Cryptography , 2007 .

[56]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[57]  Fang Song,et al.  A Note on Quantum Security for Post-Quantum Cryptography , 2014, PQCrypto.