Soil salinity prediction and mapping by machine learning regression in Central Mesopotamia, Iraq

Key Laboratory of Digital Land and Resources, East China University of Technology, Nanchang, Jiangxi, PR China 2 ICARDA (International Center for Agricultural Research in the Dry Areas), Rabat, Morocco College of Agriculture, University of Baghdad, Baghdad, Iraq GIS Division, Ministry of Agriculture, Baghdad, Iraq Earth Sciences Department, Faculty of Science, and Remote Sensing Center, University of Kufa, Kufa, Iraq Faculty of Science, East China University of Technology, Nanchang, Jiangxi, PR China Correspondence W. Wu, Key Laboratory of Digital Land and Resources, East ChinaUniversity of Technology, Nanchang, 330013 Jiangxi, PR China. Email: wuwc030903@sina.com; wuwch@ecit.cn Funding information East China University of Technology, Grant/ Award Number: DHTP2018001; Australian Agency for International Development, Grant/ Award Number: LWR/2009/034

[1]  Elfatih M. Abdel-Rahman,et al.  Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data , 2013 .

[2]  Patrick Hostert,et al.  imageRF - A user-oriented implementation for remote sensing image analysis with Random Forests , 2012, Environ. Model. Softw..

[3]  Masanobu Shimada,et al.  PALSAR Radiometric and Geometric Calibration , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Y. Inoue,et al.  Inferring the effect of plant and soil variables on C- and L-band SAR backscatter over agricultural fields, based on model analysis , 2007 .

[5]  George F. Hepner,et al.  Application of an artificial neural network to landcover classification of thematic mapper imagery , 1990 .

[6]  Martha C. Anderson,et al.  Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans , 2004 .

[7]  Mario Chica-Olmo,et al.  An assessment of the effectiveness of a random forest classifier for land-cover classification , 2012 .

[8]  Mariana Belgiu,et al.  Random forest in remote sensing: A review of applications and future directions , 2016 .

[9]  Juan J. Flores,et al.  The application of artificial neural networks to the analysis of remotely sensed data , 2008 .

[10]  B. Brisco,et al.  Modeling the dielectric behavior of saline soil at microwave frequencies , 2013 .

[11]  Mahesh Pal,et al.  Random forest classifier for remote sensing classification , 2005 .

[12]  P. V. Narasimha Rao,et al.  Dielectric properties of salt-affected soils , 1995 .

[13]  Asad Sarwar Qureshi,et al.  Salt‐induced land and water degradation in the Aral Sea basin: A challenge to sustainable agriculture in Central Asia , 2009 .

[14]  Jong-Sen Lee,et al.  Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Ayad M. Fadhil Al-Quraishi,et al.  Using Radar and Optical Data for Soil Salinity Modeling and Mapping in Central Iraq , 2019, Environmental Remote Sensing and GIS in Iraq.

[16]  J. Farifteh,et al.  Assessing salt-affected soils using remote sensing, solute modelling, and geophysics , 2006 .

[17]  Graciela Metternicht,et al.  Remote sensing of soil salinity: potentials and constraints , 2003 .

[18]  A. Bregt,et al.  Satellite Thermography for Soil Salinity Assessment of Cropped Areas in Uzbekistan , 2017 .

[19]  C. Siebe,et al.  Mapping soil salinity using a combined spectral response index for bare soil and vegetation: A case study in the former lake Texcoco, Mexico , 2006 .

[20]  E. Crist,et al.  Application of the Tasseled Cap concept to simulated thematic mapper data , 1984 .

[21]  V. Vapnik Pattern recognition using generalized portrait method , 1963 .

[22]  Budiman Minasny,et al.  Digital mapping of soil salinity in Ardakan region, central Iran , 2014 .

[23]  Marsha Fox,et al.  Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery , 2012 .

[24]  K. S. Hari Prasad,et al.  Estimation of water cloud model vegetation parameters using a genetic algorithm , 2012 .

[25]  Amine Merzouki,et al.  Sensitivity of C-band SAR polarimetric variables to unvegetated agricultural fields , 2013 .

[26]  Abderrazak Bannari,et al.  Sentinel-MSI VNIR and SWIR Bands Sensitivity Analysis for Soil Salinity Discrimination in an Arid Landscape , 2018, Remote. Sens..

[27]  L. S. Davis,et al.  An assessment of support vector machines for land cover classi(cid:142) cation , 2002 .

[28]  Taskin Kavzoglu,et al.  A kernel functions analysis for support vector machines for land cover classification , 2009, Int. J. Appl. Earth Obs. Geoinformation.

[29]  Weicheng Wu,et al.  Soil Salinity Mapping by Multiscale Remote Sensing in Mesopotamia, Iraq , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[30]  Yoshio Inoue,et al.  Ku- and C-band SAR for discriminating agricultural crop and soil conditions , 1998, IEEE Trans. Geosci. Remote. Sens..

[31]  L. Kumar,et al.  Soil Salinity Mapping and Monitoring in Arid and Semi-Arid Regions Using Remote Sensing Technology: A Review , 2013 .

[32]  F. Ulaby,et al.  Vegetation modeled as a water cloud , 1978 .

[33]  Graeme G. Wilkinson,et al.  Results and implications of a study of fifteen years of satellite image classification experiments , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Alexander J. Smola,et al.  Support Vector Method for Function Approximation, Regression Estimation and Signal Processing , 1996, NIPS.

[35]  R. Dwivedi,et al.  The selection of the best possible Landsat TM band combination for delineating salt-affected soils , 1992 .

[36]  Claudio Zucca,et al.  Enhancing the performance of regional land cover mapping , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[37]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[38]  Weicheng Wu,et al.  The Generalized Difference Vegetation Index (GDVI) for Dryland Characterization , 2014, Remote. Sens..

[39]  M. Hardisky The Influence of Soil Salinity, Growth Form, and Leaf Moisture on-the Spectral Radiance of Spartina alterniflora Canopies , 2008 .

[40]  F. Meer,et al.  Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN) , 2007 .

[41]  Boubaker Dhehibi,et al.  Mapping soil salinity changes using remote sensing in Central Iraq , 2014 .

[42]  G. F. Epema,et al.  Remote sensing of salt affected soils , 1993 .

[43]  Asad Sarwar Qureshi,et al.  Extent and characterisation of salt‐affected soils in Iran and strategies for their amelioration and management , 2008 .

[44]  Xinkai Zhu,et al.  Estimation of biomass in wheat using random forest regression algorithm and remote sensing data , 2016 .

[45]  Taha Gorji,et al.  Soil Salinity Prediction, Monitoring and Mapping Using Modern Technologies , 2015 .