Analyzing Large-Scale News Video Databases to Support Knowledge Visualization and Intuitive Retrieval

In this paper, we have developed a novel framework to enable more effective investigation of large-scale news video database via knowledge visualization. To relieve users from the burdensome exploration of well-known and uninteresting knowledge of news reports, a novel interestingness measurement for video news reports is presented to enable users to find news stories of interest at first glance and capture the relevant knowledge in large-scale video news databases efficiently. Our framework takes advantage of both automatic semantic video analysis and human intelligence by integrating with visualization techniques on semantic video retrieval systems. Our techniques on intelligent news video analysis and knowledge discovery have the capacity to enable more effective visualization and exploration of large-scale news video collections. In addition, news video visualization and exploration can provide valuable feedback to improve our techniques for intelligent news video analysis and knowledge discovery.

[1]  James J. Thomas,et al.  Visualizing the non-visual: spatial analysis and interaction with information from text documents , 1995, Proceedings of Visualization 1995 Conference.

[2]  Ramana Rao,et al.  The Hyperbolic Browser: A Focus + Context Technique for Visualizing Large Hierarchies , 1996, J. Vis. Lang. Comput..

[3]  Amarnath Gupta,et al.  Visual information retrieval , 1997, CACM.

[4]  Paul Whitney,et al.  Multi-faceted insight through interoperable visual information analysis paradigms , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).

[5]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[6]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  David Jensen,et al.  TimeMines: Constructing Timelines with Statistical Models of Word Usage , 2000, KDD 2000.

[8]  Lucy T. Nowell,et al.  ThemeRiver: visualizing theme changes over time , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[9]  Milind R. Naphade,et al.  A probabilistic framework for semantic video indexing, filtering, and retrieval , 2001, IEEE Trans. Multim..

[10]  Avideh Zakhor,et al.  Applications of Video-Content Analysis and Retrieval , 2002, IEEE Multim..

[11]  Edward Y. Chang,et al.  Confidence-based dynamic ensemble for image annotation and semantics discovery , 2003, MULTIMEDIA '03.

[12]  Jianping Fan,et al.  Concept-oriented indexing of video databases: toward semantic sensitive retrieval and browsing , 2004, IEEE Transactions on Image Processing.

[13]  Jianping Fan,et al.  Exploring Large-Scale Video News via Interactive Visualization , 2006, 2006 IEEE Symposium On Visual Analytics Science And Technology.

[14]  Jarke J. van Wijk,et al.  Bridging the Gaps , 2006, IEEE Computer Graphics and Applications.

[15]  Steven Skiena,et al.  Spatial Analysis of News Sources , 2006, IEEE Transactions on Visualization and Computer Graphics.