Counting spanning trees in self-similar networks by evaluating determinants

Spanning trees are relevant to various aspects of networks. Generally, the number of spanning trees in a network can be obtained by computing a related determinant of the Laplacian matrix of the network. However, for a large generic network, evaluating the relevant determinant is computationally intractable. In this paper, we develop a fairly generic technique for computing determinants corresponding to self-similar networks, thereby providing a method to determine the numbers of spanning trees in networks exhibiting self-similarity. We describe the computation process with a family of networks, called (x, y)-flowers, which display rich behavior as observed in a large variety of real systems. The enumeration of spanning trees is based on the relationship between the determinants of submatrices of the Laplacian matrix corresponding to the (x, y)-flowers at different generations and is devoid of the direct laborious computation of determinants. Using the proposed method, we derive analytically the exact num...

[1]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[2]  S. Havlin,et al.  Scale-free networks are ultrasmall. , 2002, Physical review letters.

[3]  Shuigeng Zhou,et al.  Evolving pseudofractal networks , 2007 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Lali Barrière,et al.  The hierarchical product of graphs , 2009, Discret. Appl. Math..

[6]  S. Ostlund,et al.  Renormalisation-group calculations of finite systems: order parameter and specific heat for epitaxial ordering , 1979 .

[7]  Abhishek Dhar,et al.  Distribution of sizes of erased loops for loop-erased random walks , 1997 .

[8]  Shlomo Havlin,et al.  Origins of fractality in the growth of complex networks , 2005, cond-mat/0507216.

[9]  Shuigeng Zhou,et al.  Different thresholds of bond percolation in scale-free networks with identical degree sequence. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Shuigeng Zhou,et al.  Mapping Koch curves into scale-free small-world networks , 2008, Journal of Physics A: Mathematical and Theoretical.

[11]  Dhar,et al.  Self-organized critical state of sandpile automaton models. , 1990, Physical review letters.

[12]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[13]  D. Dhar Theoretical studies of self-organized criticality , 2006 .

[14]  Shlomo Havlin,et al.  Fractal and transfractal recursive scale-free nets , 2007 .

[15]  Kenta Ozeki,et al.  Spanning Trees: A Survey , 2011, Graphs Comb..

[16]  Francis T. Boesch,et al.  On unreliability polynomials and graph connectivity in reliable network synthesis , 1986, J. Graph Theory.

[17]  Daniel J. Kleitman,et al.  Matrix Tree Theorems , 1978, J. Comb. Theory A.

[18]  Michael Krivelevich Embedding Spanning Trees in Random Graphs , 2010, SIAM J. Discret. Math..

[19]  Hawoong Jeong,et al.  Scale-free trees: the skeletons of complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  E Kasner,et al.  The Apollonian Packing of Circles. , 1943, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Stephan G. Wagner,et al.  On the number of spanning trees on various lattices , 2010 .

[22]  R. Lyons,et al.  High-precision entropy values for spanning trees in lattices , 2003, math-ph/0304047.

[23]  Michael Hinczewski,et al.  Inverted Berezinskii-Kosterlitz-Thouless singularity and high-temperature algebraic order in an Ising model on a scale-free hierarchical-lattice small-world network. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Wei-Shih Yang,et al.  Spanning Trees on the Sierpinski Gasket , 2006, cond-mat/0609453.

[25]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[26]  Shuigeng Zhou,et al.  Standard random walks and trapping on the Koch network with scale-free behavior and small-world effect. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[28]  J. Guan,et al.  Analytical solution of average path length for Apollonian networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .

[30]  Shuigeng Zhou,et al.  Enumeration of spanning trees in a pseudofractal scale-free web , 2010, 1008.0267.

[31]  Russell Lyons Asymptotic Enumeration of Spanning Trees , 2005, Comb. Probab. Comput..

[32]  A.-L. Barabasi,et al.  Minimum spanning trees of weighted scale-free networks , 2004 .

[33]  M. Kaufman,et al.  Spin systems on hierarchical lattices. Introduction and thermodynamic limit , 1982 .

[34]  Marián Boguñá,et al.  Extracting the multiscale backbone of complex weighted networks , 2009, Proceedings of the National Academy of Sciences.

[35]  K-I Goh,et al.  Skeleton and fractal scaling in complex networks. , 2006, Physical review letters.

[36]  K. Abbink,et al.  24 , 1871, You Can Cross the Massacre on Foot.

[37]  János Kertész,et al.  Geometry of minimum spanning trees on scale-free networks , 2003 .

[38]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[39]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[40]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[41]  J. Klafter,et al.  First-passage times in complex scale-invariant media , 2007, Nature.

[42]  F. Y. Wu Dimers and Spanning Trees , 2002 .

[43]  S. N. Dorogovtsev,et al.  Pseudofractal scale-free web. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  F. Y. Wu,et al.  Spanning trees on graphs and lattices in d dimensions , 2000, cond-mat/0004341.

[45]  S. Havlin,et al.  Self-similarity of complex networks , 2005, Nature.

[46]  J. S. Andrade,et al.  Apollonian networks: simultaneously scale-free, small world, euclidean, space filling, and with matching graphs. , 2004, Physical review letters.

[47]  R. Bapat,et al.  Resistance distance in wheels and fans , 2010 .

[48]  Stephan G. Wagner,et al.  Resistance Scaling and the Number of Spanning Trees in Self-Similar Lattices , 2011 .

[49]  F. Y. Wu Number of spanning trees on a lattice , 1977 .

[50]  Robert B. Griffiths,et al.  Exactly soluble Ising models on hierarchical lattices , 1981 .

[51]  Kun-Mao Chao,et al.  Spanning trees and optimization problems , 2004, Discrete mathematics and its applications.

[52]  Zhongzhi Zhang,et al.  Spanning trees in a fractal scale-free lattice. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Andrei Z. Broder,et al.  Counting Minimum Weight Spanning Trees , 1997, J. Algorithms.

[54]  K. Thulasiraman,et al.  MOD-CHAR: an implementation of Char's spanning tree enumeration algorithm and its complexity analysis , 1989 .

[55]  R Dobrin,et al.  Minimum spanning trees on random networks. , 2001, Physical review letters.

[56]  Criel Merino,et al.  The chip-firing game , 2005, Discret. Math..

[57]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Heiko Rieger,et al.  Random walks on complex networks. , 2004, Physical review letters.

[59]  Shlomo Havlin,et al.  Transport in weighted networks: partition into superhighways and roads. , 2006, Physical review letters.

[60]  Russell Lyons,et al.  Growth of the Number of Spanning Trees of the Erdős–Rényi Giant Component , 2007, Combinatorics, Probability and Computing.

[61]  Hernán D Rozenfeld,et al.  Percolation in hierarchical scale-free nets. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[63]  F. Chung,et al.  The average distances in random graphs with given expected degrees , 2002, Proceedings of the National Academy of Sciences of the United States of America.