Mathematical Physics A Topos for Algebraic Quantum Theory

The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr’s idea that the empirical content of quantum physics is accessible only through classical physics, we show how a noncommutative C*-algebra of observables A induces a topos T (A) in which the amalgamation of all of its commutative subalgebras comprises a single commutative C*-algebra A. According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum (A) in T (A), which in our approach plays the role of the quantum phase space of the system. Thus we associate a locale (which is the topos-theoretical notion of a space and which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to a C*-algebra (which is the noncommutative notion of a space). In this setting, states on A become probability measures (more precisely, valuations) on , and self-adjoint elements of A define continuous functions (more precisely, locale maps) from to Scott’s interval domain. Noting that open subsets of (A) correspond to propositions about the system, the pairing map that assigns a (generalized) truth value to a state and a proposition assumes an extremely simple categorical form. Formulated in this way, the quantum theory defined by A is essentially turned into a classical theory, internal to the topos T (A). These results were inspired by the topos-theoretic approach to quantum physics proposed by Butterfield and Isham, as recently generalized by Döring and Isham. Supported by N. W. O. C. Heunen, N. P. Landsman, B. Spitters Motto: ‘Ces “nuages probabilistes”, remplaçant les rassurantes particules matérielles d’antan, me rappellent étrangement les élusifs “voisinages ouverts” qui peuplent les topos, tels des fantômes évanescents, pour entourer des “points” imaginaires.’ (A. Grothendieck [43])1

[1]  C. J. Isham,et al.  A Topos Perspective on the Kochen-Specker Theorem II. Conceptual Aspects and Classical Analogues , 1998 .

[2]  A sheaf model for intuitionistic quantum mechanics , 1995, Appl. Categorical Struct..

[3]  Peter Aczel,et al.  Aspects of general topology in constructive set theory , 2006, Ann. Pure Appl. Log..

[4]  Giulia Battilotti,et al.  Pretopologies and a uniform presentation of sup-lattices, quantales and frames , 2006, Ann. Pure Appl. Log..

[5]  G. Sardanashvily,et al.  What is geometry in quantum theory , 2004 .

[6]  C. J. Isham,et al.  A topos foundation for theories of physics: II. Daseinisation and the liberation of quantum theory , 2008 .

[7]  C. J. Isham,et al.  Topos Perspective on the Kochen-Specker Theorem: I. Quantum States as Generalized Valuations , 1998, quant-ph/9803055.

[8]  Reinhold Heckmann,et al.  Probabilistic Power Domains, Information Systems, and Locales , 1993, MFPS.

[9]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[10]  P. Johnstone Sketches of an Elephant: A Topos Theory Compendium Volume 1 , 2002 .

[11]  Bernhard Banaschewski,et al.  The spectral theory of commutative C*-algebras: The constructive spectrum , 2000 .

[12]  Bas Spitters,et al.  Bohrification of operator algebras and quantum logic , 2009, Synthese.

[13]  Peter T. Johnstone,et al.  Open locales and exponentiation , 1984 .

[14]  Bas Spitters,et al.  Constructive algebraic integration theory without choice , 2005, Mathematics, Algorithms, Proofs.

[15]  C. J. Isham,et al.  A Topos Foundation for Theories of Physics: IV. Categories of Systems , 2008 .

[16]  Jeffrey Bub,et al.  Interpreting the Quantum World , 1997 .

[17]  N. P. Landsman MACROSCOPIC OBSERVABLES AND THE BORN RULE, I: LONG RUN FREQUENCIES , 2008, 0804.4849.

[18]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[19]  R. Haag,et al.  Local quantum physics , 1992 .

[20]  Traces, Dispersions of States and Hidden Variables , 2004 .

[21]  Gudrun Kalmbach Measures and Hilbert Lattices , 1986 .

[22]  Niels Bohr,et al.  Discussion with Einstein on Epistemological Problems in Atomic Physics , 1996 .

[23]  M. P. Fourman,et al.  The “world's simplest axiom of choice” fails , 1982 .

[24]  A. Doering,et al.  Quantum States and Measures on the Spectral Presheaf , 2008, 0809.4847.

[25]  Andreas Döring Kochen–Specker Theorem for von Neumann Algebras , 2005 .

[26]  C. J. Isham,et al.  A topos foundation for theories of physics: III. The representation of physical quantities with arrows δ{sup o}(A):Ï lowbar âR{sup sccue} lowbar , 2007 .

[27]  Sara Negri,et al.  Continuous domains as formal spaces , 2002, Mathematical Structures in Computer Science.

[28]  Thierry Coquand,et al.  Inductively generated formal topologies , 2003, Ann. Pure Appl. Log..

[29]  J. Wright,et al.  THE QUASI-LINEARITY PROBLEM FOR C*-ALGEBRAS , 1996 .

[30]  Marcelo P Fiore,et al.  Topology via Logic , 1999 .

[31]  Steven J. Vickers,et al.  Compactness in locales and in formal topology , 2006, Ann. Pure Appl. Log..

[32]  Giovanni Sambin,et al.  Some points in formal topology , 2003, Theor. Comput. Sci..

[34]  Thierry Coquand,et al.  Integrals and valuations , 2008, J. Log. Anal..

[35]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[36]  Steven Vickers THE DOUBLE POWERLOCALE AND EXPONENTIATION: A CASE STUDY IN GEOMETRIC LOGIC , 2004 .

[37]  Bernhard Banaschewski,et al.  The spectral theory of commutative C*-algebras: The constructive Gelfand-Mazur theorem , 2000 .

[38]  A. Joyal,et al.  An extension of the Galois theory of Grothendieck , 1984 .

[39]  T. Coquand About Stone's notion of spectrum , 2005 .

[40]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[41]  Bas Spitters,et al.  Intuitionistic Quantum Logic of an n-level System , 2009, Foundations of Physics.

[42]  Bernhard Banaschewski,et al.  A globalisation of the Gelfand duality theorem , 2006, Ann. Pure Appl. Log..

[43]  A. Connes,et al.  Noncommutative Geometry, Quantum Fields and Motives , 2007 .

[44]  Thierry Coquand,et al.  Formal Topology and Constructive Mathematics: the Gelfand and Stone-Yosida Representation Theorems , 2005, J. Univers. Comput. Sci..

[45]  N. P. Landsman Between classical and quantum , 2005 .

[46]  Gérard G. Emch,et al.  Mathematical and conceptual foundations of 20th-century physics , 1984 .

[47]  C. McLarty The Uses and Abuses of the History of Topos Theory , 1990, The British Journal for the Philosophy of Science.

[48]  J. Marquis Mathematical Conceptware: Category Theory Ralf Krömer. Tool and Object: A History and Philosophy of Category Theory , 2010 .

[49]  N. P. Landsman Lecture Notes on C -Algebras and K-Theory , 2003 .

[50]  K. Fredenhagen,et al.  Communications in Mathematical Physics The Generally Covariant Locality Principle – A New Paradigm for Local Quantum Field Theory , 2022 .

[51]  Some Worlds of Quantum Theory , 2001, quant-ph/0105052.

[52]  Ieke Moerdijk,et al.  TOPOSES ARE COHOMOLOGICALLY EQUIVALENT TO SPACES , 1990 .

[53]  L. Bunce,et al.  The Mackey‐Gleason Problem for Vector Measures on Projections in Von Neumann Algebras , 1994 .

[54]  Nicolaas P. Landsman,et al.  Mathematical Topics Between Classical and Quantum Mechanics , 1998 .

[55]  Philip J. Scott,et al.  Review: Robert Goldblatt, Topoi. The Categorical Analysis of Logic , 1982 .

[56]  T. Coquand,et al.  Constructive Gelfand duality for C*-algebras , 2008, Mathematical Proceedings of the Cambridge Philosophical Society.

[57]  Adam Grabowski,et al.  Orthomodular Lattices , 2008, Formaliz. Math..

[58]  C. J. Isham,et al.  A topos foundation for theories of physics: I. Formal languages for physics , 2007 .

[59]  C. J. Isham,et al.  Topos Perspective on the Kochen=nSpeckerTheorem: III. Von Neumann Algebras as theBase Category , 1999 .

[60]  G. Sambin Intuitionistic Formal Spaces — A First Communication , 1987 .

[61]  S. Lane,et al.  Sheaves In Geometry And Logic , 1992 .

[62]  Steven J. Vickers Locales and Toposes as Spaces , 2007, Handbook of Spatial Logics.

[63]  Andreas Doering,et al.  “What is a Thing?”: Topos Theory in the Foundations of Physics , 2008, 0803.0417.

[64]  Steven J. Vickers A localic theory of lower and upper integrals , 2008, Math. Log. Q..