The Ionizing Spectra of Extremely Metal-poor O Stars: Constraints from the Only H ii Region in Leo P

Metal-poor, star-forming dwarf galaxies produce extreme nebular emission and likely played a major role in cosmic reionization. Yet, determining their contribution to the high-redshift ionizing photon budget is hampered by the lack of observations constraining the ionizing spectra of individual massive stars more metal-poor than the Magellanic Clouds (20%–50% Z ⊙). We present new Keck Cosmic Web Imager (KCWI) optical integral field unit spectroscopy of the only H ii region in Leo P (3% Z ⊙), which is powered by a single O star. We calculate the required production rate of photons capable of ionizing hydrogen and helium from the observed Hβ and He i λ4471 emission-line fluxes. Remarkably, we find that the ionizing photon production rate and spectral hardness predicted by a tlusty model fit to the stellar spectral energy distribution agrees with our observational measurements within the uncertainties. We then fit Cloudy photoionization models to the full suite of optical emission lines in the KCWI data and show that the shape of the same tlusty ionizing continuum simultaneously matches lines across a wide range of ionization energies. Finally, we detect O iii] and N iii] nebular emission in the Hubble Space Telescope far-ultraviolet spectrum of the Leo P H ii region, and highlight that the rarely observed N iii] emission cannot be explained by our Cloudy models. These results provide the first observational evidence that widely used, yet purely theoretical, model spectra accurately predict the ionizing photon production rate from late-O stars at very low metallicity, validating their use to model metal-poor galaxies both locally and at high redshift.

[1]  S. Ravindranath,et al.  CLASSY IV. Exploring UV Diagnostics of the Interstellar Medium in Local High-z Analogs at the Dawn of the JWST Era , 2022, The Astrophysical Journal.

[2]  S. Charlot,et al.  Searching for Extremely Blue UV Continuum Slopes at z = 7–11 in JWST/NIRCam Imaging: Implications for Stellar Metallicity and Ionizing Photon Escape in Early Galaxies , 2022, The Astrophysical Journal.

[3]  S. Finkelstein,et al.  The Far-Ultraviolet Continuum Slope as a Lyman Continuum Escape Estimator at High-redshift , 2022, Monthly Notices of the Royal Astronomical Society.

[4]  Miguel de Val-Borro,et al.  The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package , 2022, The Astrophysical Journal.

[5]  S. Ravindranath,et al.  The COS Legacy Archive Spectroscopy Survey (CLASSY) Treasury Atlas , 2022, The Astrophysical Journal Supplement Series.

[6]  S. Ravindranath,et al.  The Low-redshift Lyman Continuum Survey. I. New, Diverse Local Lyman Continuum Emitters , 2022, The Astrophysical Journal Supplement Series.

[7]  O. Telford,et al.  Far-ultraviolet Spectra of Main-sequence O Stars at Extremely Low Metallicity , 2021, The Astrophysical Journal.

[8]  R. Pogge,et al.  A comprehensive chemical abundance analysis of the extremely metal poor Leoncino Dwarf galaxy (AGC 198691) , 2021, 2109.00178.

[9]  G. Meynet,et al.  Ionizing photon production of Population III stars: effects of rotation, convection, and initial mass function , 2021, Monthly Notices of the Royal Astronomical Society.

[10]  A. Grazian,et al.  The Low-redshift Lyman-continuum Survey: [S ii] Deficiency and the Leakage of Ionizing Radiation , 2021, The Astrophysical Journal.

[11]  C. Steidel,et al.  An uncontaminated measurement of the escaping Lyman continuum at z ∼ 3 , 2021, Monthly Notices of the Royal Astronomical Society.

[12]  F. Martins,et al.  Spectroscopic evolution of massive stars near the main sequence at low metallicity , 2020, Astronomy & Astrophysics.

[13]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[14]  S. Charlot,et al.  The [O iii]+H β equivalent width distribution at z ≃ 7: implications for the contribution of galaxies to reionization , 2020, 2005.02402.

[15]  R. Giovanelli,et al.  The Leoncino Dwarf Galaxy: Exploring the Low-metallicity End of the Luminosity–Metallicity and Mass–Metallicity Relations , 2020, The Astrophysical Journal.

[16]  J. Puls,et al.  New predictions for radiation-driven, steady-state mass-loss and wind-momentum from hot, massive stars , 2019, Astronomy & Astrophysics.

[17]  R. Naidu,et al.  Rapid Reionization by the Oligarchs: The Case for Massive, UV-bright, Star-forming Galaxies with High Escape Fractions , 2019, The Astrophysical Journal.

[18]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[19]  A. Zitrin,et al.  Near-infrared Spectroscopy of Galaxies During Reionization: Measuring C iii] in a Galaxy at z = 7.5 , 2019, The Astrophysical Journal.

[20]  H. Dahle,et al.  Constraining the Metallicities, Ages, Star Formation Histories, and Ionizing Continua of Extragalactic Massive Star Populations , 2019, The Astrophysical Journal.

[21]  J. Gallagher,et al.  Testing massive star evolution, star-formation history, and feedback at low metallicity , 2019, Astronomy & Astrophysics.

[22]  S. Finkelstein,et al.  Conditions for Reionizing the Universe with a Low Galaxy Ionizing Photon Escape Fraction , 2019, The Astrophysical Journal.

[23]  N. Bastian,et al.  First stellar spectroscopy in Leo P , 2019, Astronomy & Astrophysics.

[24]  P. Dayal Early galaxy formation and its large-scale effects , 2018, Proceedings of the International Astronomical Union.

[25]  David F. Hilyard,et al.  The Keck Cosmic Web Imager Integral Field Spectrograph , 2018, The Astrophysical Journal.

[26]  Benjamin D. Johnson,et al.  Nebular Continuum and Line Emission in Stellar Population Synthesis Models , 2016, 1611.08305.

[27]  D. Erb Feedback in low-mass galaxies in the early Universe , 2015, Nature.

[28]  Christophe Morisset,et al.  PyNeb: a new tool for analyzing emission lines - I. Code description and validation of results , 2014, 1410.6662.

[29]  B. Milvang-Jensen,et al.  Ultraviolet emission lines in young low-mass galaxies at z ≃ 2: physical properties and implications for studies at z > 7 , 2014, 1408.1420.

[30]  S. Warren,et al.  ALFALFA DISCOVERY OF THE NEARBY GAS-RICH DWARF GALAXY LEO P. V. NEUTRAL GAS DYNAMICS AND KINEMATICS , 2014, 1404.5298.

[31]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[32]  P. Massey Massive Stars in the Galaxies of the Local Group , 2013, 1305.5914.

[33]  R. Giovanelli,et al.  ALFALFA DISCOVERY OF THE NEARBY GAS-RICH DWARF GALAXY LEO P. III. AN EXTREMELY METAL DEFICIENT GALAXY , 2013, 1305.0277.

[34]  R. Giovanelli,et al.  ALFALFA DISCOVERY OF THE NEARBY GAS-RICH DWARF GALAXY LEO P. II. OPTICAL IMAGING OBSERVATIONS , 2013, 1305.0270.

[35]  R. Giovanelli,et al.  ALFALFA DISCOVERY OF THE NEARBY GAS-RICH DWARF GALAXY LEO P. I. H i OBSERVATIONS , 2013, 1305.0272.

[36]  C. Morisset pyCloudy: Tools to manage astronomical Cloudy photoionization code , 2013 .

[37]  C. Conroy Modeling the Panchromatic Spectral Energy Distributions of Galaxies , 2013, 1301.7095.

[38]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[39]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[40]  R. Giovanelli,et al.  THE ARECIBO LEGACY FAST ALFA SURVEY: THE α.40 H i SOURCE CATALOG, ITS CHARACTERISTICS AND THEIR IMPACT ON THE DERIVATION OF THE H i MASS FUNCTION , 2011, 1109.0027.

[41]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[42]  G. Stasińska,et al.  The ionizing radiation from massive stars and its impact on H ii regions: results from modern model atmospheres , 2008, 0805.1362.

[43]  E. al.,et al.  The Arecibo Legacy Fast ALFA Survey. I. Science Goals, Survey Design, and Strategy , 2005, astro-ph/0508301.

[44]  D. Schaerer,et al.  O stars with weak winds: the Galactic case , 2005, astro-ph/0507278.

[45]  O. Dors,et al.  Determination of temperature of the ionizing stars of H II regions , 2003 .

[46]  Ivan Hubeny,et al.  A Grid of Non-LTE Line-blanketed Model Atmospheres of O-Type Stars , 2002, astro-ph/0210157.

[47]  C. Evans,et al.  Revised Stellar Temperatures for Magellanic Cloud O Supergiants from FUSE and VLT-UVES Spectroscopy , 2002, astro-ph/0206257.

[48]  D. Schaerer On the properties of massive Population III stars and metal-free stellar populations , 2001, astro-ph/0110697.

[49]  V. Narayanan,et al.  Evidence for Reionization at z ∼ 6: Detection of a Gunn-Peterson Trough in a z = 6.28 Quasar , 2001, astro-ph/0108097.

[50]  A. Pauldrach,et al.  Radiation-driven winds of hot luminous stars - XIII. A description of NLTE line blocking and blanketing towards realistic models for expanding atmospheres , 2001 .

[51]  F. Bresolin,et al.  An Empirical Test and Calibration of H II Region Diagnostics , 2000, astro-ph/0002180.

[52]  M. Dopita,et al.  Calibration of Nebular Emission-Line Diagnostics. I. Stellar Effective Temperatures , 1999, astro-ph/9912363.

[53]  F. Keenan,et al.  Excitation Rate Coefficients for Fine-Structure Transitions in O III , 1998 .

[54]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[55]  Ivan Hubeny,et al.  Non-LTE line-blanketed model atmospheres of hot stars. 1: Hybrid complete linearization/accelerated lambda iteration method , 1995 .

[56]  G. Ferland,et al.  THE [NE III]-[O II] SPECTRUM AS AN IONIZATION INDICATOR IN NEBULAE , 1991 .

[57]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[58]  Reviews in Frontiers of Modern Astrophysics , 2020 .

[59]  H. Lamers,et al.  UvA-DARE ( Digital Academic Repository ) Mass-loss predictions for 0 and B stars as a fuction of metallicity , 2022 .