Asymmetric electrosynthesis: Recent advances in catalytic transformations

[1]  T. Besset,et al.  Chiral Transient Directing Groups in Transition-Metal-Catalyzed Enantioselective C–H Bond Functionalization , 2020, ACS Catalysis.

[2]  Helena Lundberg,et al.  Recent Advances in Asymmetric Catalytic Electrosynthesis , 2020 .

[3]  Chang Guo,et al.  Merging Electrosynthesis and Bifunctional Squaramide Catalysis in the Asymmetric Detrifluoroacetylative Alkylation Reactions. , 2020, Angewandte Chemie.

[4]  Yao Li,et al.  Catalytic AsymmetricElectrochemicalα-Arylation of Cyclic β-Ketocarbonyls with Anodic Benzyne Intermediates. , 2020, Angewandte Chemie.

[5]  S. Waldvogel,et al.  Electro-organic synthesis – a 21st century technique , 2020, Chemical science.

[6]  T. Mei,et al.  Cu(II)/TEMPO-Catalyzed Enantioselective C(sp3)-H Alkynylation of Tertiary Cyclic Amines via Shono-type Oxidation. , 2020, Angewandte Chemie.

[7]  Dong Liu,et al.  Enantioselective Ni-Catalyzed Electrochemical Synthesis of Biaryl Atropisomers. , 2020, Journal of the American Chemical Society.

[8]  L. Ackermann,et al.  Electroreductive Cobalt‐Catalyzed Carboxylation: Cross‐Electrophile Electrocoupling with Atmospheric CO2 , 2020, Angewandte Chemie.

[9]  L. Ackermann,et al.  Enantioselective Pallada‐Electrocatalyzed C−H Activation by Transient Directing Groups: Expedient Access to Helicenes , 2020, Angewandte Chemie.

[10]  Chang Guo,et al.  Asymmetric Electrochemical Transformation. , 2020, Angewandte Chemie.

[11]  Zhiguang Zhu,et al.  Enzymatic electrosynthesis as an emerging electrochemical synthesis platform , 2020, Current Opinion in Electrochemistry.

[12]  M. O. Frederick,et al.  Dual Electrocatalysis Enables Enantioselective Hydrocyanation of Conjugated Alkenes , 2019, Nature Chemistry.

[13]  Zhi Guan,et al.  Highly enantioselective electrosynthesis of C2-quaternary indolin-3-ones. , 2019, Chemical communications.

[14]  M. Rueping,et al.  A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions , 2019, Beilstein journal of organic chemistry.

[15]  Juno C. Siu,et al.  New Bisoxazoline Ligands Enable Enantioselective Electrocatalytic Cyanofunctionalization of Vinylarenes. , 2019, Journal of the American Chemical Society.

[16]  Qifeng Lin,et al.  Asymmetric Electrochemical Catalysis. , 2019, Chemistry.

[17]  Travis J DeLano,et al.  Enantioselective Electroreductive Coupling of Alkenyl and Benzyl Halides via Nickel Catalysis. , 2019, ACS catalysis.

[18]  Chang Guo,et al.  Asymmetric Lewis Acid Catalyzed Electrochemical Alkylation. , 2019, Angewandte Chemie.

[19]  L. H. Finger,et al.  Resource Economy by Metallaelectrocatalysis: Merging Electrochemistry and C H Activation , 2019, Trends in Chemistry.

[20]  Bahareh Shirinfar,et al.  A Green Approach: Vicinal Oxidative Electrochemical Alkene Difunctionalization , 2018, ChemElectroChem.

[21]  Ruben Martin,et al.  Transition-Metal-Catalyzed Carboxylation Reactions with Carbon Dioxide. , 2018, Angewandte Chemie.

[22]  Yi-Qian Li,et al.  Palladium-catalyzed reductive electrocarboxylation of allyl esters with carbon dioxide , 2018 .

[23]  Cong Ma,et al.  Recent Advances in C–H Functionalization Using Electrochemical Transition Metal Catalysis , 2018, ACS Catalysis.

[24]  Y. Qiu,et al.  Electrocatalytic C–H Activation , 2018, ACS Catalysis.

[25]  Song Lin,et al.  An Electrocatalytic Approach to the Radical Difunctionalization of Alkenes , 2018 .

[26]  K. Moeller Using Physical Organic Chemistry To Shape the Course of Electrochemical Reactions. , 2018, Chemical reviews.

[27]  E. Meggers,et al.  Electricity-driven asymmetric Lewis acid catalysis , 2018, Nature Catalysis.

[28]  P. Baran,et al.  Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance. , 2017, Chemical reviews.

[29]  E. R. Jarvo,et al.  Stereospecific and stereoconvergent cross-couplings between alkyl electrophiles , 2017 .

[30]  Song Lin,et al.  Metal-catalyzed electrochemical diazidation of alkenes , 2017, Science.

[31]  Qi‐Jun Yao,et al.  Atroposelective Synthesis of Axially Chiral Biaryls by Palladium-Catalyzed Asymmetric C-H Olefination Enabled by a Transient Chiral Auxiliary. , 2017, Angewandte Chemie.

[32]  S. Luo,et al.  Catalytic Asymmetric Electrochemical Oxidative Coupling of Tertiary Amines with Simple Ketones. , 2017, Organic letters.

[33]  Hisanori Senboku,et al.  Electrochemical carboxylation with carbon dioxide , 2017 .

[34]  Jyhfu Lee,et al.  Direct Observation of Reduction of Cu(II) to Cu(I) by P–H Compounds using XAS and EPR Spectroscopy , 2016 .

[35]  D. Weix Methods and Mechanisms for Cross-Electrophile Coupling of Csp2 Halides with Alkyl Electrophiles , 2015, Accounts of chemical research.

[36]  Andrew J Boydston,et al.  Recent Developments in Organocatalyzed Electroorganic Chemistry , 2015 .

[37]  Alan H. Cherney,et al.  Nickel-Catalyzed Asymmetric Reductive Cross-Coupling Between Vinyl and Benzyl Electrophiles , 2014, Journal of the American Chemical Society.

[38]  Chao‐Jun Li,et al.  The cross-dehydrogenative coupling of C(sp3)-H bonds: a versatile strategy for C-C bond formations. , 2014, Angewandte Chemie.

[39]  B. Frontana‐Uribe,et al.  Organic electrosynthesis: a promising green methodology in organic chemistry , 2010 .

[40]  K. Jørgensen,et al.  Anodic oxidation and organocatalysis: direct regio- and stereoselective access to meta-substituted anilines by alpha-arylation of aldehydes. , 2010, Angewandte Chemie.

[41]  Hye‐Young Jang,et al.  Organocatalyzed α-Oxyamination of Aldehydes Using Anodic Oxidation , 2009 .

[42]  A. Jutand,et al.  Contribution of electrochemistry to organometallic catalysis. , 2008, Chemical reviews.

[43]  O. Onomura,et al.  Asymmetric electrochemical oxidation of 1,2-diols, aminoalcohols, and aminoaldehydes in the presence of chiral copper catalyst , 2008 .

[44]  Jun-ichi Yoshida,et al.  Modern strategies in electroorganic synthesis. , 2008, Chemical reviews.

[45]  M. Kuroboshi,et al.  Electrochemical asymmetric epoxidation of olefins by using an optically active Mn-salen complex , 2001 .

[46]  Y. Kawakami,et al.  Electro-oxidative kinetic resolution of sec-alcohols by using an optically active N-oxyl mediator , 2000 .

[47]  Matsumura,et al.  First example of memory of chirality in carbenium ion chemistry , 2000, Organic letters.

[48]  C. Amatore,et al.  Chemical and Electrochemical Asymmetric Dihydroxylation of Olefins in I2−K2CO3−K2OsO2(OH)4 and I2−K3PO4/K2HPO4−K2OsO2(OH)4 Systems with Sharpless' Ligand , 1996 .

[49]  T. Osa,et al.  Enantioselective, electrocatalytic oxidative coupling of naphthol, naphthyl ether and phenanthrol on a TEMPO-modified graphite felt electrode in the presence of (–)-sparteine (TEMPO = 2,2,6,6-tetramethylpiperidin-1-yloxyl) , 1994 .

[50]  J. Devynck,et al.  Electrocatalyzed carboxylation of organic halides by a cobalt-salen complex , 1985 .

[51]  D. Seebach,et al.  Asymmetrische Synthese bei Photo‐, Elektro‐ und Alkalimetall‐Pinakolisierungen von Benzaldehyd und Phenonen im chiralen Medium DDB , 1977 .

[52]  L. Miller,et al.  Asymmetric, cathodic reduction of acetylpyridines , 1977 .

[53]  L. Miller,et al.  Oxidations on DSA and chirally modified DSA and tin dioxide electrodes , 1976 .

[54]  J. Grimshaw,et al.  Electrochemical reduction in the presence of tertiary amines: an asymmetric synthesis of 3,4-dihydro-4-methylcoumarin , 1967 .

[55]  S. Fukuzumi,et al.  Enantioselective Organocatalysis Using SOMO Activation , 2022 .