2,6-Dicyan-4,8-diphenylbarbaralan

2,6-Dicyano-4,8-diphenylbarbaralane[1] Conjugate addition of the phenylcuprate reagent, obtained from phenyllithium, copper(I) cyanide, and boron trifluoride–diethylether, to the bicyclo[3.3.1]nonadienedione 3 affords the diphenylbicyclo[3.3.1]nonanedione 4 in high yield. Catalyzed by the potassium cyanide/18-crown-6 complex, addition of trimethylsilyl cyanide produces a mixture of the diastereomeric bis[O-(trimethylsilyl)cyanohydrins] exo,exo-, exo,endo- and endo,endo-5. The hydrogen fluoride – pyridine complex in phosphorus oxychloride as solvent and, subsequently, an excess of pyridine convert the diastereomers 5 into the unsaturated γ,γ′1-diphenyldinirile 6. This is brominated by N1-bromosuccinimide to yield the γ,γ′1-dibromodinitriles exo- and endo- 7 (6:1). The predominant diastereomer exo-7 is debrominated by the zinc-copper couple to afford the orange-red title compound 2 in 78% yield. More conveniently, the unsaturated dinitrile 6 is converted to 2 in a single step by treatment with hexachloroethane and concentrated aqueous sodium hydroxide in the presence of tetrabutylammonium hydroxide as phase-transfer catalyst. Surprisingly, low yields of 2 are also obtained when the bis[O-(trimethylsilyl)cyanohydrins] 5 or the unsaturated dinitrile 6 are treated with phosphorus oxychloride in boiling pyridine. – The structures of the new compounds are based on spectroscopic evidence and X-ray diffraction analyses of 2, 4, and endo,endo-5. The conformations of 4 and endo,endo-5 in solution are inferred on the basis of vicinal proton coupling constants and a comparison with coupling constants calculated with the aid of the Karplus equation and torsional angles obtained by X-ray diffraction analyses. – While the barbaralane 2 exists as a pair of very rapidly rearranging degenerate valence tautomers in solution, the degeneracy is lifted in the crystal lattice. As a result, the crystal consists of two rapidly rearranging but non-equivalent valence tautomers in a ratio of 9:1 as estimated from the apparent atomic distance C2–C8 of 2 and the C2–C8 bond length of non-rearranging barbaralanes. – The colour of 2 in the crystal and in solution results from a maximum at 436 nm which increases on heating of the solution to 450 K. Cooling to 77 K results in reversible fading and the disappearance of the maximum. Thus, 2 is a barbaralane like 1 which exhibits colour though it is lacking a classical long-wavelength chromophore.

[1]  H. Schnering,et al.  2,4,6,8‐Tetraphenylbarbaralan – ein orangeroter, thermochromer Kohlenwasserstoff ohne Chromophor[1,2] , 1993 .

[2]  H. Quast,et al.  Diphenyl- and Bis(phenylethynyl)semibullvalenes , 1992 .

[3]  P. Perlmutter Conjugate Addition Reactions in Organic Synthesis , 1992 .

[4]  K. Peters,et al.  2,6‐Dicyansemibullvalen , 1992 .

[5]  K. Peters,et al.  Synthesis and X‐Ray Diffraction Analysis of Bis(phenylsulphonyl)semibullvalenes. Lifting of the Degeneracy of Semibullvalenes in the Crystal Lattice[1] , 1992 .

[6]  Vladimir A. Palyulin,et al.  Conformational Analysis of Bicyclo(3.3.1)nonanes and Their Hetero Analogs , 2010 .

[7]  P. Camps,et al.  Conformational analysis of bicyclo[3.3.1]nonane‐exo‐2,exo‐4‐dicarboxylic acid derivatives and related compounds , 1989 .

[8]  K. Peters,et al.  2,6‐Dicyan‐1,5‐tetramethylensemibullvalene , 1989 .

[9]  A. Benesi,et al.  The cope rearrangement of 1,5-dimethylsemibullvalene-2,6- and 3,7-dicarbonitriles in the solid state , 1989 .

[10]  A. Mayer,et al.  Synthesis and Degenerate Cope Rearrangement of 2,6‐Diphenylbarbaralane. , 1986 .

[11]  R. Merényi,et al.  Substituent Effects in Radical Chemistry , 1986 .

[12]  P. Camps,et al.  Boat-chair conformational preference of exo, exo-9-oxobicyclo[3.3.1]nonane-2,4-dicarboxylic acid , 1985 .

[13]  H. Quast,et al.  Temperaturabhängigkeit des UV-Spektrums von 1,5-Dimethyl-2,6-semibullvalendicarbonitril, Hinweis auf ein Gleichgewicht mit einem delokalisierten, homoaromatischen Isomer† , 1984 .

[14]  J. Christ,et al.  Temperature Dependence of the UV Spectrum of 1,5‐Dimethyl‐2,6‐semibullvalenedicarbonitrile; Evidence for an Equilibrium with a Delocalized, Homoaromatic Isomer , 1984 .

[15]  J. Tedder Which Factors Determine the Reactivity and Regioselectivity of Free Radical Substitution and Addition Reactions , 1982 .

[16]  H. Quast,et al.  2,6‐Barbaralane Dicarbonitrile: A Probe for Dewar‐Hoffmann‐Type Homoaromatic Molecules , 1981 .

[17]  G. Helmchen,et al.  Synthesis of the stereoisomers of 17,21-dimethylheptatriacontane - sex recognition pheromone of the tsetse fly , 1980 .

[18]  Joop A. Peters,et al.  Chair-boat equilibria in bicyclo[3.3.1]nonane and some 3- and 3,7-substituted derivatives: Thermodynamic parameters and geometry of the conformers as obtained by molecular mechanics , 1978 .

[19]  N. Zefirov Conformational Analysis of Bicyclo[3,3,1]nonanes , 1975 .

[20]  Davidr . Evans,et al.  Synthetic applications of trimethylsilyl cyanide. Efficient synthesis of .beta.-aminomethyl alcohols , 1974 .

[21]  J. Schaefer,et al.  Bicyclo[3.3.1]nonanes. IV. Dehydration of the bicyclo[3.3.1]nonane-2,6-diols , 1968 .

[22]  H. Engelhardt,et al.  Reinigung organischer Lösungsmittel für optische Zwecke , 1968 .

[23]  M. Schlosser,et al.  Notiz Über die darstellung reiner lithiumaryle , 1967 .

[24]  H. Stetter,et al.  Über Verbindungen mit Urotropin‐Struktur, XXIII1) Synthese des 2‐Thia‐ adamantans , 1962 .

[25]  W. F. Seyer,et al.  The Densities and Surface Tensions of cis- and trans-Decahydronaphthalene between -30 and 180°1 , 1941 .