Lower bound theorems for general polytopes

Abstract For a d -dimensional polytope with v vertices, d + 1 ≤ v ≤ 2 d , we calculate precisely the minimum possible number of m -dimensional faces, when m = 1 or m ≥ 0 . 62 d . This confirms a conjecture of Grunbaum, for these values of m . For v = 2 d + 1 , we solve the same problem when m = 1 or d − 2 ; the solution was already known for m = d − 1 . In all these cases, we give a characterisation of the minimising polytopes. We also show that there are many gaps in the possible number of m -faces: for example, there is no polytope with 80 edges in dimension 10, and a polytope with 407 edges can have dimension at most 23.

[1]  Julien Ugon,et al.  The Excess Degree of a Polytope , 2017, SIAM J. Discret. Math..

[2]  Éric Fusy Counting d-Polytopes with d+3 Vertices , 2006, Electron. J. Comb..

[3]  B. Grünbaum Polytopes, graphs, and complexes , 1970 .

[4]  I. G. MacDonald,et al.  CONVEX POLYTOPES AND THE UPPER BOUND CONJECTURE , 1973 .

[5]  G. Ziegler Lectures on Polytopes , 1994 .

[6]  Krzysztof Przeslawski,et al.  More Indecomposable Polyhedra , 2016, 1607.00643.

[7]  Jack D. Dunitz,et al.  A complete catalogue of polyhedra with eight or fewer vertices , 1973 .

[8]  A. Brøndsted An Introduction to Convex Polytopes , 1982 .

[9]  Krzysztof Przeslawski,et al.  Decomposability of Polytopes , 2008, Discret. Comput. Geom..

[10]  N. Prabhu,et al.  Hamiltonian simple polytopes , 1995, Discret. Comput. Geom..

[11]  G. C. Shephard Decomposable convex polyhedra , 1963 .

[12]  Peter McMullen,et al.  Indecomposable convex polytopes , 1987 .

[13]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[14]  Tibor Bisztriczky On a class of generalized simplices , 1996 .

[15]  Carl W. Lee Counting the faces of simplicial convex polytopes , 1981 .

[16]  D. Barnette The minimum number of vertices of a simple polytope , 1971 .

[17]  Gil Kalai,et al.  Rigidity and the lower bound theorem 1 , 1987 .

[18]  Svante Linusson,et al.  The Number of k-Faces of a Simple d-Polytope , 2007, Discret. Comput. Geom..

[19]  P. McMullen,et al.  The Minimum Number of Facets of a Convex Polytope , 1971 .

[20]  P. J. Federico,et al.  Polyhedra with 4 to 8 faces , 1975 .