A limit theorem at the edge of a non-Hermitian random matrix ensemble
暂无分享,去创建一个
[1] J. Ginibre. Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .
[2] R. Rao,et al. Normal Approximation and Asymptotic Expansions , 1976 .
[3] S. Geman. THE SPECTRAL RADIUS OF LARGE RANDOM MATRICES , 1986 .
[4] Z. D. Bai,et al. Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix , 1988 .
[5] C. Tracy,et al. Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.
[6] C. Tracy,et al. Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .
[7] A. Edelman. The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .
[8] Y. Fyodorov,et al. Universality in the random matrix spectra in the regime of weak non-hermiticity , 1998, chao-dyn/9802025.
[9] P. J. Forrester,et al. Exact statistical properties of the zeros of complex random polynomials , 1999 .
[10] J. W. Silverstein,et al. EXACT SEPARATION OF EIGENVALUES OF LARGE DIMENSIONAL SAMPLE COVARIANCE MATRICES , 1999 .
[11] A. Soshnikov. Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.
[12] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis , 2001 .