Segmentation d'images par sélection de courbes de niveau

We study an image segmentation energy, which minimizer can be determined. The approach estimates the unknown number of objects and draws object boundaries by selecting the \best" level lines computed from level sets of the image. As a consequence, no energy minimization methods is necessary, yielding to a fast and non-iterative segmentation algorithm. Finally, anisotropic di usion is used to smooth level lines in noisy images.

[1]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[2]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[3]  Morris Goldberg,et al.  Hierarchy in Picture Segmentation: A Stepwise Optimization Approach , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Jean-Michel Morel,et al.  Variational methods in image segmentation , 1995 .