Therapeutic targets for amyotrophic lateral sclerosis: current treatments and prospects for more effective therapies

Although amyotrophic lateral sclerosis (ALS) was described more than 130 years ago, the cause(s) of most cases of this adult motor neuron disease remains a mystery. With the discovery of mutations in one gene (Cu/Zn superoxide dismutase) as a primary cause of some forms of ALS, model systems have been developed that have helped us begin to understand mechanisms involved in motor neuron death and enabled testing of potential new therapies. Several other genes have been implicated as risk factors in motor neuron diseases, including neurofilaments, cytoplasmic dynein and dynactin, vascular endothelial growth factor, and angiogenin. With advances in the basic research of the disease, many hypotheses accounting for motor neuron death are being explored, including loss of trophic support, protein mishandling, mitochondrial dysfunction, excitotoxicity, axonal abnormalities and inflammation. Many of these mechanisms are the focus of research in other neurodegenerative disorders, such as Parkinson’s, Alzheimer’s and Huntington’s disease.

[1]  F. Baas,et al.  Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2-21.3. , 2006, Brain : a journal of neurology.

[2]  H. Horvitz,et al.  A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia , 2006, Neurology.

[3]  D. Hernandez,et al.  Mutations in neurofilament genes are not a significant primary cause of non-SOD1-mediated amyotrophic lateral sclerosis , 2006, Neurobiology of Disease.

[4]  D. Borchelt,et al.  Coincident thresholds of mutant protein for paralytic disease and protein aggregation caused by restrictively expressed superoxide dismutase cDNA , 2005, Neurobiology of Disease.

[5]  L. H. van den Berg,et al.  Multidisciplinary ALS care improves quality of life in patients with ALS , 2005, Neurology.

[6]  R. Morimoto,et al.  Structural properties and neuronal toxicity of amyotrophic lateral sclerosis–associated Cu/Zn superoxide dismutase 1 aggregates , 2005, The Journal of cell biology.

[7]  P. Arlotta,et al.  Fezl Is Required for the Birth and Specification of Corticospinal Motor Neurons , 2005, Neuron.

[8]  M. Beal,et al.  Manganese porphyrin given at symptom onset markedly extends survival of ALS mice , 2005, Annals of neurology.

[9]  W. Robberecht,et al.  GluR2 Deficiency Accelerates Motor Neuron Degeneration in a Mouse Model of Amyotrophic Lateral Sclerosis , 2005, Journal of neuropathology and experimental neurology.

[10]  R. Ferrante,et al.  Sodium phenylbutyrate prolongs survival and regulates expression of anti‐apoptotic genes in transgenic amyotrophic lateral sclerosis mice , 2005, Journal of neurochemistry.

[11]  C. Svendsen,et al.  GDNF delivery using human neural progenitor cells in a rat model of ALS. , 2005, Human gene therapy.

[12]  Timothy A. Miller,et al.  Virus‐delivered small RNA silencing sustains strength in amyotrophic lateral sclerosis , 2005, Annals of neurology.

[13]  L. Greensmith,et al.  Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model , 2005, Nature Medicine.

[14]  C. Henderson,et al.  Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS , 2005, Nature Medicine.

[15]  Robert A Pearce,et al.  Specification of motoneurons from human embryonic stem cells , 2005, Nature Biotechnology.

[16]  Paola Arlotta,et al.  Neuronal Subtype-Specific Genes that Control Corticospinal Motor Neuron Development In Vivo , 2005, Neuron.

[17]  P. Fisher,et al.  β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression , 2005, Nature.

[18]  Y. Kawahara,et al.  Excitotoxicity and ALS: What is unique about the AMPA receptors expressed on spinal motor neurons? , 2005, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[19]  Christoph Schmitz,et al.  Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS , 2005, Nature Neuroscience.

[20]  Y. Kawahara,et al.  Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis , 2005, Journal of Molecular Medicine.

[21]  T. Conrad,et al.  A clinical trial of creatine in ALS , 2004, Neurology.

[22]  T. Gillingwater,et al.  A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. , 2004, American journal of human genetics.

[23]  Ole Gredal,et al.  Toxicity of Familial ALS-Linked SOD1 Mutants from Selective Recruitment to Spinal Mitochondria , 2004, Neuron.

[24]  Robert H. Brown,et al.  Amyotrophic Lateral Sclerosis-Associated SOD1 Mutant Proteins Bind and Aggregate with Bcl-2 in Spinal Cord Mitochondria , 2004, Neuron.

[25]  L. Bruijn,et al.  Unraveling the mechanisms involved in motor neuron degeneration in ALS. , 2004, Annual review of neuroscience.

[26]  John W Griffin,et al.  DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). , 2004, American journal of human genetics.

[27]  P. Carmeliet,et al.  VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model , 2004, Nature.

[28]  P. Lansbury,et al.  A possible therapeutic target for Lou Gehrig's disease. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  A. Chakrabartty,et al.  Monomeric Cu,Zn-superoxide Dismutase Is a Common Misfolding Intermediate in the Oxidation Models of Sporadic and Familial Amyotrophic Lateral Sclerosis*[boxs] , 2004, Journal of Biological Chemistry.

[30]  Timothy J Mitchison,et al.  A Novel Action of Histone Deacetylase Inhibitors in a Protein Aggresome Disease Model , 2004, Current Biology.

[31]  Geoffrey Burnstock,et al.  Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice , 2004, Nature Medicine.

[32]  Ichiro Kanazawa,et al.  Glutamate receptors: RNA editing and death of motor neurons , 2004, Nature.

[33]  Minh N. H. Nguyen,et al.  Wild-Type Nonneuronal Cells Extend Survival of SOD1 Mutant Motor Neurons in ALS Mice , 2003, Science.

[34]  O. Hardiman,et al.  Effect of a multidisciplinary amyotrophic lateral sclerosis (ALS) clinic on ALS survival: a population based study, 1996–2000 , 2003, Journal of neurology, neurosurgery, and psychiatry.

[35]  F. Gage,et al.  Retrograde Viral Delivery of IGF-1 Prolongs Survival in a Mouse ALS Model , 2003, Science.

[36]  C. Lewis,et al.  Two families with familial amyotrophic lateral sclerosis are linked to a novel locus on chromosome 16q. , 2003, American journal of human genetics.

[37]  P. Zamore,et al.  Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis , 2003, Aging cell.

[38]  John Mitchell,et al.  A new familial amyotrophic lateral sclerosis locus on chromosome 16q12.1-16q12.2. , 2003, American journal of human genetics.

[39]  J. Haines,et al.  Identification of two novel loci for dominantly inherited familial amyotrophic lateral sclerosis. , 2003, American journal of human genetics.

[40]  Yasushi Hiraoka,et al.  Mutations in Dynein Link Motor Neuron Degeneration to Defects in Retrograde Transport , 2003, Science.

[41]  J. Veldink,et al.  A randomized sequential trial of creatine in amyotrophic lateral sclerosis , 2003, Annals of neurology.

[42]  Shin J. Oh,et al.  Mutant dynactin in motor neuron disease , 2003, Nature Genetics.

[43]  P. Carmeliet,et al.  VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death , 2003, Nature Genetics.

[44]  A. Tobin,et al.  Teaching old drugs new tricks , 2002, Trends in Neurosciences.

[45]  M. Beal,et al.  Mutated Human SOD1 Causes Dysfunction of Oxidative Phosphorylation in Mitochondria of Transgenic Mice* , 2002, The Journal of Biological Chemistry.

[46]  H. Wichterle,et al.  Directed Differentiation of Embryonic Stem Cells into Motor Neurons , 2002, Cell.

[47]  J. Julien,et al.  Minocycline Slows Disease Progression in a Mouse Model of Amyotrophic Lateral Sclerosis , 2002, Neurobiology of Disease.

[48]  P. Caroni,et al.  Accumulation of SOD1 Mutants in Postnatal Motoneurons Does Not Cause Motoneuron Pathology or Motoneuron Disease , 2002, The Journal of Neuroscience.

[49]  W. Robberecht,et al.  Minocycline delays disease onset and mortality in a transgenic model of ALS , 2002, Neuroreport.

[50]  D. Howland,et al.  Disruption of Dynein/Dynactin Inhibits Axonal Transport in Motor Neurons Causing Late-Onset Progressive Degeneration , 2002, Neuron.

[51]  Betty Y. S. Kim,et al.  Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice , 2002, Nature.

[52]  Zuoshang Xu,et al.  Mutant Cu, Zn Superoxide Dismutase that Causes Motoneuron Degeneration Is Present in Mitochondria in the CNS , 2002, The Journal of Neuroscience.

[53]  D. Borchelt,et al.  High Molecular Weight Complexes of Mutant Superoxide Dismutase 1: Age-Dependent and Tissue-Specific Accumulation , 2002, Neurobiology of Disease.

[54]  Fred H. Gage,et al.  Neurogenesis in the Adult Brain , 2002, The Journal of Neuroscience.

[55]  Arturo Alvarez-Buylla,et al.  Neurogenesis in Adult Subventricular Zone , 2002, The Journal of Neuroscience.

[56]  S. Ozawa Response: Glial processes are glued to synapses via Ca2+-permeable glutamate receptors Response from Seiji Ozawa , 2002, Trends in Neurosciences.

[57]  Robert H. Brown,et al.  A novel locus for familial amyotrophic lateral sclerosis, on chromosome 18q. , 2002, American journal of human genetics.

[58]  K. Hensley,et al.  Temporal patterns of cytokine and apoptosis-related gene expression in spinal cords of the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. , 2002, Journal of neurochemistry.

[59]  J. D. Macklis,et al.  Manipulation of Neural Precursors in situ: Induction of Neurogenesis in the Neocortex of Adult Mice , 2001, Neuropsychopharmacology.

[60]  Minh N. H. Nguyen,et al.  Induction of proinflammatory molecules in mice with amyotrophic lateral sclerosis: No requirement for proapoptotic interleukin‐1β in neurodegeneration , 2001, Annals of neurology.

[61]  J. Elliott Cytokine upregulation in a murine model of familial amyotrophic lateral sclerosis. , 2001, Brain research. Molecular brain research.

[62]  M. Pericak-Vance,et al.  The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis , 2001, Nature Genetics.

[63]  D. Housman,et al.  Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila , 2001, Nature.

[64]  S. Appel,et al.  Immune reactivity in a mouse model of familial ALS correlates with disease progression , 2001, Neurology.

[65]  S. Scherer,et al.  A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2 , 2001, Nature Genetics.

[66]  J. Holstege,et al.  CuZn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked SOD1 mutations , 2001, Acta Neuropathologica.

[67]  D. Selkoe Presenilin, Notch, and the genesis and treatment of Alzheimer's disease , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[68]  S. Minotti,et al.  Mutant Cu/Zn-Superoxide Dismutase Proteins Have Altered Solubility and Interact with Heat Shock/Stress Proteins in Models of Amyotrophic Lateral Sclerosis* , 2001, The Journal of Biological Chemistry.

[69]  Fred H. Gage,et al.  Can stem cells cross lineage boundaries? , 2001, Nature Medicine.

[70]  Robert H. Brown,et al.  Amyotrophic Lateral Sclerosis-linked Glutamate Transporter Mutant Has Impaired Glutamate Clearance Capacity* , 2001, The Journal of Biological Chemistry.

[71]  P. Andersen Genetics of sporadic ALS , 2001, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[72]  P. Andersen,et al.  The geographical and ethnic distribution of the D90A CuZn-SOD mutation in the Russian Federation. , 2001, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[73]  S. Hadano,et al.  A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2 , 2001, Nature Genetics.

[74]  Till Acker,et al.  Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration , 2001, Nature Genetics.

[75]  M. Dubois‐Dauphin,et al.  Delaying Caspase Activation by Bcl-2: A Clue to Disease Retardation in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis , 2000, The Journal of Neuroscience.

[76]  D. Cleveland,et al.  Caspase-1 and -3 are sequentially activated in motor neuron death in Cu,Zn superoxide dismutase-mediated familial amyotrophic lateral sclerosis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[77]  T. Siddique,et al.  Current status of SOD1 mutations in familial amyotrophic lateral sclerosis. , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[78]  J. Rothstein,et al.  Inhibition of cyclooxygenase‐2 protects motor neurons in an organotypic model of amyotrophic lateral sclerosis , 2000, Annals of neurology.

[79]  J. Haines,et al.  Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21-q22. , 2000, JAMA.

[80]  K. Fischbeck,et al.  A gene for autosomal dominant juvenile amyotrophic lateral sclerosis (ALS4 ) localizes to a 500-kb interval on chromosome 9q34 , 2000, Neurogenetics.

[81]  P. Stieg,et al.  Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. , 2000, Science.

[82]  P. Andersen,et al.  Genetic factors in the early diagnosis of ALS , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[83]  W. Snider,et al.  Restricted Expression of G86R Cu/Zn Superoxide Dismutase in Astrocytes Results in Astrocytosis But Does Not Cause Motoneuron Degeneration , 2000, The Journal of Neuroscience.

[84]  Kenji Nakashima,et al.  New consensus research on neuropathological aspects of familial amyotrophic lateral sclerosis with superoxide dismutase 1 (SOD1) gene mutations: Inclusions containing SOD1 in neurons and astrocytes , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[85]  R. Sufit,et al.  Practice parameter: The care of the patient with amyotrophic lateral sclerosis (an evidence-based review) , 1999, Neurology.

[86]  Ole A. Andreassen,et al.  Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis , 1999, Nature Medicine.

[87]  A Al-Chalabi,et al.  Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. , 1999, Human molecular genetics.

[88]  J. Slade,et al.  Novel insertion in the KSP region of the neurofilament heavy gene in amyotrophic lateral sclerosis (ALS) , 1998, Neuroreport.

[89]  M. Pericak-Vance,et al.  Linkage of a commoner form of recessive amyotrophic lateral sclerosis to chromosome 15q15-q22 markers , 1998, Neurogenetics.

[90]  L. Bruijn,et al.  Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. , 1998, Science.

[91]  S. Browne,et al.  Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[92]  H. Aanstoot Laboratory Standards in the Assessment of the Quality of Care , 1998, Hormone Research in Paediatrics.

[93]  J. Kong,et al.  Massive Mitochondrial Degeneration in Motor Neurons Triggers the Onset of Amyotrophic Lateral Sclerosis in Mice Expressing a Mutant SOD1 , 1998, The Journal of Neuroscience.

[94]  M. Gurney,et al.  Riluzole preserves motor function in a transgenic model of familial amyotrophic lateral sclerosis , 1998, Neurology.

[95]  Masahiko Watanabe,et al.  Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. , 1997, Science.

[96]  M. Gurney,et al.  Midbrain dopaminergic neuronal degeneration in a transgenic mouse model of familial amyotrophic lateral sclerosis , 1997, Annals of neurology.

[97]  H. Horvitz,et al.  Epidemiology of mutations in superoxide dismutase in amyotrophic lateal sclerosis , 1997, Annals of neurology.

[98]  D. Borchelt,et al.  ALS-Linked SOD1 Mutant G85R Mediates Damage to Astrocytes and Promotes Rapidly Progressive Disease with SOD1-Containing Inclusions , 1997, Neuron.

[99]  K. Wilhelmsen,et al.  Disinhibition-dementia-parkinsonism-amyotrophy complex (DDPAC) is a non-Alzheimer's frontotemporal dementia. , 1997, Journal of neural transmission. Supplementum.

[100]  L. Bruijn,et al.  Mechanisms of selective motor neuron death in ALS: insights from transgenic mouse models of motor neuron disease , 1996, Neuropathology and applied neurobiology.

[101]  L. Bruijn,et al.  Sequence variants in human neurofilament proteins: Absence of linkage to familial amyotrophic lateral sclerosis , 1996, Annals of neurology.

[102]  J. Rothstein Excitotoxicity hypothesis , 1996, Neurology.

[103]  P. Leigh,et al.  Dose-ranging study of riluzole in amyotrophic lateral sclerosis , 1996, The Lancet.

[104]  M. Beal,et al.  Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury , 1996, Nature Genetics.

[105]  A. Levey,et al.  Selective loss of glial glutamate transporter GLT‐1 in amyotrophic lateral sclerosis , 1995, Annals of neurology.

[106]  D. Borchelt,et al.  An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria , 1995, Neuron.

[107]  H. Horvitz,et al.  Superoxide Dismutase Concentration and Activity in Familial Amyotrophic Lateral Sclerosis , 1995, Journal of neurochemistry.

[108]  J. Morrison,et al.  Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[109]  M. Gurney,et al.  Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. , 1994, The American journal of pathology.

[110]  R. H. Brown,et al.  A transgenic-mouse model of amyotrophic lateral sclerosis. , 1994, The New England journal of medicine.

[111]  V. Meininger,et al.  Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. , 1994, Human molecular genetics.

[112]  D. Borchelt,et al.  Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[113]  M. Gurney,et al.  Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. , 1994, Science.

[114]  V. Meininger,et al.  A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. , 1994, The New England journal of medicine.

[115]  M. Swash,et al.  Histochemical and immunocytochemical study of ubiquitinated neuronal inclusions in amyotrophic lateral sclerosis , 1993, Neuropathology and applied neurobiology.

[116]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[117]  A. Álvarez-Buylla Neurogenesis and plasticity in the CNS of adult birds , 1992, Experimental Neurology.

[118]  J. Coyle,et al.  Excitatory amino acids in amyotrophic lateral sclerosis: An update , 1991, Annals of neurology.

[119]  M. Swash,et al.  Ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis. Morphology, distribution, and specificity. , 1991, Brain : a journal of neurology.

[120]  P N Leigh,et al.  Cytoskeletal pathology in motor neuron diseases. , 1991, Advances in neurology.

[121]  J. Coyle,et al.  Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis , 1990, Annals of neurology.

[122]  R. Liem Neuronal intermediate filaments. , 1990, Current opinion in cell biology.

[123]  L. Kurland,et al.  Familial adult motor neuron disease: amyotrophic lateral sclerosis , 1986, Neurology.

[124]  S. Carpenter,et al.  Neurofibrillary axonal swellings and amyotrophic lateral sclerosis , 1984, Journal of the Neurological Sciences.

[125]  P. Dyck,et al.  Morphometric Comparison of the Vulnerability of Peripheral Motor and Sensory Neurons in Amyotrophic Lateral Sclerosis , 1981, Journal of neuropathology and experimental neurology.