A carbon nano-tube field effect transistor based stable, low-power 8T static random access memory cell with improved write access time

[1]  Ashish Sachdeva Design of a stable single sided 11T static random access memory cell with improved critical charge , 2022, International journal of numerical modelling.

[2]  Mohammad Khaleqi Qaleh Jooq,et al.  A New Design Paradigm for Auto-Nonvolatile Ternary SRAMs Using Ferroelectric CNTFETs: From Device to Array Architecture , 2022, IEEE Transactions on Electron Devices.

[3]  Ashish Sachdeva Low Power Static Random-Access Memory Cell Design for Mobile Opportunistic Networks Sensor Nodes , 2022, J. Circuits Syst. Comput..

[4]  Erfan Abbasian,et al.  Design of high stability, low power and high speed 12T SRAM cell in 32-nm CNTFET technology , 2022, AEU - International Journal of Electronics and Communications.

[5]  Uma Maheshwar Janniekode,et al.  Design and Analysis of 16nm GNRFET and CMOS Based Low Power 4kb SRAM Array Using 1-Bit 6T SRAM Cell , 2022, 2022 IEEE IAS Global Conference on Emerging Technologies (GlobConET).

[6]  Jaya Madan,et al.  Role of Junctionless Mode in Improving the Photosensitivity of Sub-10 nm Carbon Nanotube/Nanoribbon Field-Effect Phototransistors: Quantum Simulation, Performance Assessment, and Comparison , 2022, Nanomaterials.

[7]  M. Gholipour,et al.  A Single-Bitline 9T SRAM for Low-Power Near-Threshold Operation in FinFET Technology , 2022, Arabian Journal for Science and Engineering.

[8]  R. Kennel,et al.  Synergy of Electrostatic and Chemical Doping to Improve the Performance of Junctionless Carbon Nanotube Tunneling Field-Effect Transistors: Ultrascaling, Energy-Efficiency, and High Switching Performance , 2022, Nanomaterials.

[9]  Ashish Sachdeva,et al.  Design of a soft error hardened SRAM cell with improved access time for embedded systems , 2022, Microprocess. Microsystems.

[10]  Vaithiyanathan Dhandapani,et al.  Design and Analysis of Soft Error Rate in FET/CNTFET Based Radiation Hardened SRAM Cell , 2021, Sensors.

[11]  Mohammad Hossein Moaiyeri,et al.  Leveraging Negative Capacitance CNTFETs for Image Processing: An Ultra-Efficient Ternary Image Edge Detection Hardware , 2021, IEEE Transactions on Circuits and Systems I: Regular Papers.

[12]  S. K. Sinha,et al.  Comprehensive review on electrical noise analysis of TFET structures , 2021, Superlattices and Microstructures.

[13]  Rajnish Sharma,et al.  Ultra-low power signal conditioning system for effective biopotential signal recording , 2021, Journal of Micromechanics and Microengineering.

[14]  Mohammad Khaleqi Qaleh Jooq,et al.  Analog/RF performance assessment of ferroelectric junctionless carbon nanotube FETs: A quantum simulation study , 2021 .

[15]  Ravindra Kumar Maurya,et al.  Review of FinFET Devices and Perspective on Circuit Design Challenges , 2021, Silicon.

[16]  Ashish Sachdeva,et al.  Characterization of Stable 12T SRAM with Improved Critical Charge , 2021, J. Circuits Syst. Comput..

[17]  Ashish Sachdeva,et al.  A soft-error resilient low power static random access memory cell , 2021, Analog Integrated Circuits and Signal Processing.

[18]  Rajnish Sharma,et al.  Ultra Low-Power Low-Pass Filter Design for Wearable Biomedical Applications , 2021, 2021 Devices for Integrated Circuit (DevIC).

[19]  M. Elangovan,et al.  Darlington Based 8T CNTFET SRAM Cells with Low Power and Enhanced Write Stability , 2021, Transactions on Electrical and Electronic Materials.

[20]  Ashish Sachdeva,et al.  A Multi-bit Error Upset Immune 12T SRAM Cell for 5G Satellite Communications , 2021, Wireless Personal Communications.

[21]  Sanjay Vidhyadharan,et al.  A novel ultra-low-power CNTFET and 45 nm CMOS based ternary SRAM , 2021, Microelectron. J..

[22]  K. Tamersit Improved Switching Performance of Nanoscale p-i-n Carbon Nanotube Tunneling Field-Effect Transistors Using Metal-Ferroelectric-Metal Gating Approach , 2021, ECS Journal of Solid State Science and Technology.

[23]  C. Madhu,et al.  Design and Stability analysis of CNTFET based SRAM cell , 2021, IOP Conference Series: Materials Science and Engineering.

[24]  Mohammad Hossein Moaiyeri,et al.  Ultra-Compact Ternary Logic Gates Based on Negative Capacitance Carbon Nanotube FETs , 2020, IEEE Transactions on Circuits and Systems II: Express Briefs.

[25]  K. Gunavathi,et al.  High Stable and Low Power 8T CNTFET SRAM Cell , 2020, J. Circuits Syst. Comput..

[26]  J. S. Ubhi,et al.  Design and analysis of CNTFET based 10T SRAM for high performance at nanoscale , 2019, Int. J. Circuit Theory Appl..

[27]  Tarun Kumar Gupta,et al.  Performance evaluation of single-ended disturb-free CNTFET-based multi-Vt SRAM , 2019, Microelectron. J..

[28]  M. H. Moaiyeri,et al.  A low-leakage and high-writable SRAM cell with back-gate biasing in FinFET technology , 2019, Journal of Computational Electronics.

[29]  Xiaobin He,et al.  Miniaturization of CMOS , 2019, Micromachines.

[30]  T. Gupta,et al.  Design of an ultralow power CNTFET based 9T SRAM with shared BL and half select free techniques , 2018, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields.

[31]  Tarun Kumar Gupta,et al.  Reliable high-yield CNTFET-based 9T SRAM operating near threshold voltage region , 2018 .

[32]  Shaahin Hessabi,et al.  A robust and low-power near-threshold SRAM in 10-nm FinFET technology , 2018 .

[33]  V. Soundarya,et al.  DESIGN, ANALYSIS AND SIMULATION OF CNTFET BASED SRAM CELLS. , 2017 .

[34]  M. M. Abutaleb,et al.  Optimization of CNFET Parameters for High Performance Digital Circuits , 2016 .

[35]  Volkan Kursun,et al.  A Novel Robust and Low-Leakage SRAM Cell With Nine Carbon Nanotube Transistors , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[36]  Mohammad Eshghi,et al.  Ultra low-power 7T SRAM cell design based on CMOS , 2015, 2015 23rd Iranian Conference on Electrical Engineering.

[37]  Sied Mehdi Fakhraie,et al.  An 8T Low-Voltage and Low-Leakage Half-Selection Disturb-Free SRAM Using Bulk-CMOS and FinFETs , 2014, IEEE Transactions on Electron Devices.

[38]  Dhiraj K. Pradhan,et al.  A low power and robust carbon nanotube 6T SRAM design with metallic tolerance , 2014, 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[39]  Keivan Navi,et al.  A universal method for designing low-power carbon nanotube FET-based multiple-valued logic circuits , 2013, IET Comput. Digit. Tech..

[40]  Frank Schwierz,et al.  Graphene Transistors: Status, Prospects, and Problems , 2013, Proceedings of the IEEE.

[41]  José G. Delgado-Frias,et al.  CNTFET 8T SRAM cell performance with near-threshold power supply scaling , 2013, 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013).

[42]  José G. Delgado-Frias,et al.  SRAM leakage in CMOS, FinFET and CNTFET technologies: leakage in 8t and 6t sram cells , 2012, GLSVLSI '12.

[43]  Hai Wei,et al.  Carbon Nanotube Robust Digital VLSI , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[44]  Ashwani K. Rana,et al.  Physical Scaling Limits of FinFET Structure: A Simulation Study , 2011, VLSIC 2011.

[45]  Yong-Bin Kim,et al.  CNTFET-Based Design of Ternary Logic Gates and Arithmetic Circuits , 2011, IEEE Transactions on Nanotechnology.

[46]  W. Choi,et al.  Hetero-Gate-Dielectric Tunneling Field-Effect Transistors , 2010, IEEE Transactions on Electron Devices.

[47]  Z. Kordrostami,et al.  Fundamental Physical Aspects of Carbon Nanotube Transistors , 2010 .

[48]  Behzad Ebrahimi,et al.  Realistic CNFET based SRAM cell design for better write stability , 2009, 2009 1st Asia Symposium on Quality Electronic Design.

[49]  Mohd. Hasan,et al.  Performance comparison of CNFET- and CMOS-based 6T SRAM cell in deep submicron , 2009, Microelectron. J..

[50]  S. Hamdioui,et al.  Why is CMOS scaling coming to an END? , 2008, 2008 3rd International Design and Test Workshop.

[51]  K. Banerjee,et al.  Accurate Intrinsic Gate Capacitance Model for Carbon Nanotube-Array Based FETs Considering Screening Effect , 2008, IEEE Electron Device Letters.

[52]  Young Bok Kim,et al.  A low power 8T SRAM cell design technique for CNFET , 2008, 2008 International SoC Design Conference.

[53]  Yong-Bin Kim,et al.  A new SRAM cell design using CNTFETs , 2008, 2008 International SoC Design Conference.

[54]  T. Zimmer,et al.  Computationally Efficient Physics-Based Compact CNTFET Model for Circuit Design , 2008, IEEE Transactions on Electron Devices.

[55]  Zhiyu Liu,et al.  Characterization of a Novel Nine-Transistor SRAM Cell , 2008, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[56]  H. Wong,et al.  A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application—Part I: Model of the Intrinsic Channel Region , 2007, IEEE Transactions on Electron Devices.

[57]  Jie Deng,et al.  A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application—Part II: Full Device Model and Circuit Performance Benchmarking , 2007, IEEE Transactions on Electron Devices.

[58]  Byung-Gook Park,et al.  Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec , 2007, IEEE Electron Device Letters.

[59]  K. Roy,et al.  Carbon Nanotube Field-Effect Transistors for High-Performance Digital Circuits—DC Analysis and Modeling Toward Optimum Transistor Structure , 2006, IEEE Transactions on Electron Devices.

[60]  Anna W. Topol,et al.  Stable SRAM cell design for the 32 nm node and beyond , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[61]  T. Skotnicki,et al.  The end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performance , 2005, IEEE Circuits and Devices Magazine.

[62]  H. Dai,et al.  High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. , 2004, Nano letters.

[63]  Mark S. Lundstrom,et al.  High-κ dielectrics for advanced carbon-nanotube transistors and logic gates , 2002 .

[64]  K. Sasaki Charge screening effect in metallic carbon nanotubes , 2001, cond-mat/0112178.

[65]  A. G. Perri,et al.  A Comparison of CNTFET and CMOS Technology through the Design of a SRAM Cell , 2019, ECS Journal of Solid State Science and Technology.

[66]  Saravana Maruthamuthu,et al.  Ultra low power dual-gate 6T and 8T stack forced CNFET SRAM cells , 2013, Microelectron. J..

[67]  P. A. Gowri Sankar,et al.  Investigating the effect of chirality on coaxial Carbon Nanotube Field Effect Transistor , 2012, 2012 International Conference on Computing, Electronics and Electrical Technologies (ICCEET).

[68]  Yong-Bin Kim,et al.  Design of a CNTFET-Based SRAM Cell by Dual-Chirality Selection , 2010, IEEE Transactions on Nanotechnology.

[69]  R. R. Mishra,et al.  Carbon Nanotube Field Effect Transistor: Basic Characterization and Effect of High Dielectric Material , 2009 .