Guanylation of NH2-MIL-125 under green condition: An approach to strengthen basic sites of NH2-functionalized materials for enhanced base catalysis

[1]  S. Jhung,et al.  Insights into the Structure–Property–Activity Relationship of Zeolitic Imidazolate Frameworks for Acid–Base Catalysis , 2023, International journal of molecular sciences.

[2]  J. Bedia,et al.  Microwave-assisted synthesis of NH2-MIL-125(Ti) for the solar photocatalytic degradation of aqueous emerging pollutants in batch and continuous tests , 2021 .

[3]  Yongde Xia,et al.  An in situ investigation of the thermal decomposition of metal-organic framework NH2-MIL-125 (Ti) , 2021, Microporous and Mesoporous Materials.

[4]  G. Yadav,et al.  Claisen‐Schmidt Condensation using Green Catalytic Processes: A Critical Review , 2020 .

[5]  M. Álvarez,et al.  Synthesis of Chalcone Using LDH/Graphene Nanocatalysts of Different Compositions , 2019, ChemEngineering.

[6]  W. Dong,et al.  Aromatic heterocycle-grafted NH2-MIL-125(Ti) via conjugated linker with enhanced photocatalytic activity for selective oxidation of alcohols under visible light , 2018 .

[7]  Linbing Sun,et al.  Metal-Organic Frameworks for Heterogeneous Basic Catalysis. , 2017, Chemical reviews.

[8]  A. Antiñolo,et al.  Structural and Mechanistic Insights into s-Block Bimetallic Catalysis: Sodium Magnesiate-Catalyzed Guanylation of Amines. , 2016, Chemistry.

[9]  C. Len,et al.  Modified fluorapatite as highly efficient catalyst for the synthesis of chalcones via Claisen–Schmidt condensation reaction , 2016 .

[10]  S. Jhung,et al.  Acid-base properties and catalytic activity of metal-organic frameworks: A view from spectroscopic and semiempirical methods , 2016 .

[11]  H. Hattori Solid base catalysts: fundamentals and their applications in organic reactions , 2015 .

[12]  Vipan Kumar,et al.  Recent developments in biological activities of chalcones: a mini review. , 2014, European journal of medicinal chemistry.

[13]  D. Shah,et al.  A novel approach for selective cross aldol condensation using reusable NaOH-cationic micellar systems , 2013 .

[14]  M. Frikha,et al.  Amberlyst-15 and Amberlite-200C: efficient catalysts for aldol and cross-aldol condensation under ultrasound irradiation. , 2013, Ultrasonics sonochemistry.

[15]  B. Bhanage,et al.  Novel and green approach for the nanocrystalline magnesium oxide synthesis and its catalytic performance in Claisen–Schmidt condensation , 2013 .

[16]  Hee-Young Kim,et al.  Adsorption/catalytic properties of MIL-125 and NH2-MIL-125 , 2013 .

[17]  D. Shah,et al.  Clean borrowing hydrogen methodology using hydrotalcite supported copper catalyst , 2013 .

[18]  G. Seo,et al.  CO2 cycloaddition of styrene oxide over MOF catalysts , 2013 .

[19]  H. García,et al.  Evidence of photoinduced charge separation in the metal-organic framework MIL-125(Ti)-NH2. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[20]  Zhaohui Li,et al.  An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. , 2012, Angewandte Chemie.

[21]  S. B. Halligudi,et al.  Effect of Diamine in Amine-Functionalized MIL-101 for Knoevenagel Condensation , 2011 .

[22]  P. Vázquez,et al.  Synthesis of chalcones catalyzed by aminopropylated silica sol–gel under solvent-free conditions , 2011 .

[23]  H. García,et al.  Claisen–Schmidt Condensation Catalyzed by Metal‐Organic Frameworks , 2010 .

[24]  W. Li,et al.  Preparation of highly ordered mesoporous AlSBA-15–SO3H hybrid material for the catalytic synthesis of chalcone under solvent-free condition , 2010 .

[25]  S. Sebti,et al.  Efficient synthesis of chalcone derivatives catalyzed by re-usable hydroxyapatite , 2010 .

[26]  R. Banerjee,et al.  Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks. , 2008, Journal of the American Chemical Society.

[27]  W. Hölderich,et al.  Methylammonium-FAU zeolite: Investigation of the basic sites in base catalyzed reactions and its performance , 2008 .

[28]  Francesc Medina,et al.  The DBU-H2O complex as a new catalyst for aldol condensation reactions , 2008 .

[29]  D. Yin,et al.  Synthesis of chalcones catalyzed by a novel solid sulfonic acid from bamboo , 2008 .

[30]  M. B. Gawande,et al.  Cross-aldol and Knoevenagel condensation reactions in aqueous micellar media , 2008 .

[31]  S. Shylesh,et al.  Sulfonic acid functionalized mesoporous silicas and organosilicas: Synthesis, characterization and catalytic applications , 2007 .

[32]  R. Martín-Aranda,et al.  Ultrasound accelerated Claisen–Schmidt condensation: A green route to chalcones , 2006 .

[33]  K. Yeung,et al.  Sonocatalysis in solvent free conditions: An efficient eco-friendly methodology to prepare chalcones using a new type of amino grafted zeolites , 2006 .

[34]  A. Corma,et al.  Activated hydrotalcites as catalysts for the synthesis of chalcones of pharmaceutical interest , 2004 .

[35]  R. Shriner,et al.  CHALCONES. II. DECOMPOSITION BY ALKALI , 1930 .

[36]  Min Wei,et al.  Recent advances for solid basic catalysts: Structure design and catalytic performance , 2019, Journal of Solid State Chemistry.

[37]  A. Corma,et al.  Base Catalysis for Fine Chemicals Production: Claisen-Schmidt Condensation on Zeolites and Hydrotalcites for the Production of Chalcones and Flavanones of Pharmaceutical Interest , 1995 .