Microalgal biomass for bioethanol fermentation: Implications for hypersaline systems with an industrial focus

The potential of microalgae biomass as a feedstock for bioethanol fermentation has been widely considered in recent years. Yet, to date, only a modest level of research has been reported in this area. In all likelihood, the generation of a sustainable, sufficient level of biomass for biofuel production will need to be undertaken in saline water, and potentially under hypersaline conditions, to circumvent reliance on fresh water. However, the processing challenges associated with the fermentation of hypersaline biomass have yet to be adequately addressed. This review examines developments thus far for producing bioethanol from microalgae, indicating alternative means by which hypersaline microalgal biomass may be utilised, and provides a framework in which the industrial potential for sourcing such biomass should be considered.

[1]  K. Reitan,et al.  Structural characterization of beta-D-(1-->3)-glucans from different growth phases of the marine diatoms Chaetoceros mülleri and Thalassiosira weissflogii. , 2005, Carbohydrate research.

[2]  Yan Wu,et al.  Sugar compositional determination of polysaccharides from Dunaliella salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone , 2010 .

[3]  S. A. Olaitan,et al.  Polysaccharides of Chlorella pyrenoidosa. , 1962, The Biochemical journal.

[4]  Brant C. White,et al.  United States patent , 1985 .

[5]  P. Dürre Fermentative Butanol Production , 2008, Annals of the New York Academy of Sciences.

[6]  N. Vasisht,et al.  Characterisation of a highly stable α-amylase from the halophilic archaeon Haloarcula hispanica , 2005, Extremophiles.

[7]  Wen‐Teng Wu,et al.  Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. , 2010, Bioresource technology.

[8]  Carlos Ricardo Soccol,et al.  Bioethanol from lignocelluloses: Status and perspectives in Brazil. , 2010, Bioresource technology.

[9]  Yan Lin,et al.  Ethanol fermentation from biomass resources: current state and prospects , 2006, Applied Microbiology and Biotechnology.

[10]  Razif Harun,et al.  Influence of acid pre-treatment on microalgal biomass for bioethanol production , 2011 .

[11]  A. Ziaee,et al.  Purification and characterization of an organic-solvent-tolerant halophilic α-amylase from the moderately halophilic Nesterenkonia sp. strain F , 2011, Journal of Industrial Microbiology & Biotechnology.

[12]  Olaf Kruse,et al.  An economic and technical evaluation of microalgal biofuels , 2010, Nature Biotechnology.

[13]  Razif Harun,et al.  Microalgal biomass as a fermentation feedstock for bioethanol production , 2009 .

[14]  Jianjun Du,et al.  The production of butanol from Jamaica bay macro algae , 2012 .

[15]  Andrew Moore Biofuels are dead: long live biofuels(?) - part two. , 2008, New biotechnology.

[16]  M. Melkonian,et al.  2‐KETO‐SUGAR ACIDS IN GREEN FLAGELLATES: A CHEMICAL MARKER FOR PRASINOPHYCEAN SCALES 1, 2 , 1991 .

[17]  Jinwon Lee,et al.  Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. , 2009, Journal of microbiology and biotechnology.

[18]  M. Huesemann,et al.  Acetone-butanol fermentation of marine macroalgae. , 2012, Bioresource technology.

[19]  M. Blumreisinger,et al.  Cell wall composition of chlorococcal algae , 1983 .

[20]  Bai-cheng Zhou,et al.  Effect of iron on growth and lipid accumulation in Chlorella vulgaris. , 2008, Bioresource technology.

[21]  D. Manners,et al.  575. α-1: 4-Glucosans. Part IX. The molecular structure of a starch-type polysaccharide from Dunaliella bioculata , 1958 .

[22]  A. Oren A thermophilic amyloglucosidase fromHalobacterium sodomense, a halophilic bacterium from the Dead Sea , 1983, Current Microbiology.

[23]  A. Ventosa,et al.  Halophilic Archaea and Bacteria as a Source of Extracellular Hydrolytic Enzymes , 2005 .

[24]  W. Krumbein,et al.  Excretion of fermentation products in dark and anaerobically incubated cyanobacteria , 1991, Archives of Microbiology.

[25]  S. Ball,et al.  Genetic dissection of floridean starch synthesis in the cytosol of the model dinoflagellate Crypthecodinium cohnii , 2009, Proceedings of the National Academy of Sciences.

[26]  Navid R. Moheimani,et al.  Sustainable biofuels from algae , 2013, Mitigation and Adaptation Strategies for Global Change.

[27]  G. Gooday A Biochemical and Autoradiographic Study of the Role of the Golgi Bodies in Thecal Formation in Platymonas tetrathele , 1971 .

[28]  Fumio Shirai,et al.  Cultivation of microalgae in the solution from the desalting process of soy sauce waste treatment and utilization of the algal biomass for ethanol fermentation , 1998 .

[29]  John R. Coleman,et al.  Ethanol Synthesis by Genetic Engineering in Cyanobacteria , 1999, Applied and Environmental Microbiology.

[30]  D. Manners,et al.  115. Studies on the metabolism of the protozoa. Part VIII. The molecular structure of a starch-type polysaccharide from chilomonas paramecium , 1960 .

[31]  D. Northcote,et al.  The chemical composition and structure of the cell wall of Chlorella pyrenoidosa. , 1958, The Biochemical journal.

[32]  S. Tanenbaum,et al.  System Development for Linked-Fermentation Production of Solvents from Algal Biomass , 1983, Applied and environmental microbiology.

[33]  M. Gibbs,et al.  Fermentative Metabolism of Chlamydomonas reinhardtii: I. Analysis of Fermentative Products from Starch in Dark and Light. , 1984, Plant physiology.

[34]  Hiroshi Suzuki Starch-type polysaccharide and mannitol in Platymonas , 1974 .

[35]  A. Bacic,et al.  THE COMPLEX POLYSACCHARIDES OF THE RAPHID DIATOM PINNULARIA VIRIDIS (BACILLARIOPHYCEAE) 1 , 2003 .

[36]  Charles E. Wyman,et al.  BIOMASS ETHANOL: Technical Progress, Opportunities, and Commercial Challenges , 1999 .

[37]  H. C. Bold,et al.  Introduction to the algae: structure and reproduction , 1978 .

[38]  J. van der Oost,et al.  Fermentation metabolism of the unicellular cyanobacterium Cyanothece PCC 7822 , 1989, Archives of Microbiology.

[39]  Raymond S. Norton,et al.  Organic Osmoregulatory Solutes in Cyanobacteria , 1984 .

[40]  Simone Graeff-Hönninger,et al.  The impact of a growing bioethanol industry on food production in Brazil , 2011 .

[41]  H. Atsushi,et al.  CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation , 1997 .

[42]  D. Lamport,et al.  Hydroxyproline Heterooligosaccharides in Chlamydomonas , 1972, Science.

[43]  Shin Hirayama,et al.  Ethanol production from carbon dioxide by fermentative microalgae , 1998 .

[44]  M. Borowitzka Commercial production of microalgae: ponds, tanks, tubes and fermenters , 1999 .

[45]  M. Thring World Energy Outlook , 1977 .

[46]  Hiroshi Ohata,et al.  Saccharification of marine microalgae using marine bacteria for ethanol production , 2003, Applied biochemistry and biotechnology.

[47]  L. Barsanti,et al.  Algae: Anatomy, Biochemistry, and Biotechnology , 2005 .

[48]  António A. Vicente,et al.  Nutrient limitation as a strategy for increasing starch accumulation in microalgae , 2011 .

[49]  Jianfeng Xu,et al.  Bioethanol and biodiesel: Alternative liquid fuels for future generations , 2010 .

[50]  C. Kokare,et al.  Isolation and characterization of novel α-amylase from marine Streptomyces sp. D1 , 2009 .

[51]  J. Fargione,et al.  The Ecological Impact of Biofuels , 2010 .

[52]  E. Casadevall,et al.  Carbohydrate composition and characterization of sugars from the green microalga Botryococcus Braunii , 1990 .

[53]  Cenk Sayin,et al.  Engine performance and exhaust gas emissions of methanol and ethanol–diesel blends , 2010 .

[54]  A. Oren Industrial and environmental applications of halophilic microorganisms , 2010, Environmental technology.

[55]  Donna Lee Jones Potential Air Emission Impacts of Cellulosic Ethanol Production at Seven Demonstration Refineries in the United States , 2010, Journal of the Air & Waste Management Association.

[56]  A. Ben‐Amotz,et al.  The Role of Glycerol in the Osmotic Regulation of the Halophilic Alga Dunaliella parva. , 1973, Plant physiology.

[57]  Mikael Höök,et al.  The Peak of the Oil Age : Analyzing the world oil production Reference Scenario in World Energy Outlook 2008 , 2010 .

[58]  Jinwon Lee,et al.  Converting Carbohydrates Extracted from Marine Algae into Ethanol Using Various Ethanolic Escherichia coli Strains , 2011, Applied biochemistry and biotechnology.

[59]  Anna K. Monfils,et al.  Characterization of paramylon morphological diversity in photosynthetic euglenoids (Euglenales, Euglenophyta) , 2011 .

[60]  S. Miyachi,et al.  Ethanol Production by Dark Fermentation in the Marine Green Alga, Chlorococcum littorale , 1998 .

[61]  Malcolm R. Brown,et al.  The amino-acid and sugar composition of 16 species of microalgae used in mariculture , 1991 .

[62]  Aie World Energy Outlook 2009 , 2000 .

[63]  W. Thomas,et al.  Yields, photosynthetic efficiencies and proximate composition of dense marine microalgal cultures. II. Dunaliella primolecta and Tetraselmis suecica experiments☆ , 1984 .

[64]  H. S. Matthews,et al.  Indirect land use change and biofuel policy , 2009 .

[65]  D. Manners,et al.  α-(14)-d-glucans , 1972 .

[66]  I. Allison The science of climate change: questions and answers , 2010 .

[67]  Ryan Davis,et al.  Techno-economic analysis of autotrophic microalgae for fuel production , 2011 .

[68]  M. Borowitzka,et al.  Production of biofuels from microalgae , 2011, Mitigation and Adaptation Strategies for Global Change.

[69]  M. Tsuzuki,et al.  Structural and physiological studies on the storage β-polyglucan of haptophyte Pleurochrysis haptonemofera , 2008, Planta.

[70]  E. Schmid,et al.  Impacts of population growth, economic development, and technical change on global food production and consumption , 2011 .

[71]  Ludivine Pidol,et al.  Ethanol–biodiesel–Diesel fuel blends: Performances and emissions in conventional Diesel and advanced Low Temperature Combustions , 2012 .

[72]  Havva Balat,et al.  Recent trends in global production and utilization of bio-ethanol fuel , 2009 .

[73]  Long-Fei Wu,et al.  Glucoamylase production by the marine yeast Aureobasidium pullulans N13d and hydrolysis of potato starch granules by the enzyme , 2007 .

[74]  S. Sim,et al.  Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. , 2010, Bioresource technology.

[75]  Christine Nicole S. Santos,et al.  An Engineered Microbial Platform for Direct Biofuel Production from Brown Macroalgae , 2012, Science.

[76]  M. Melkonian,et al.  Identification of 3-deoxy-manno-2-octulosonic acid, 3-deoxy-5-O-methyl-manno-2-octulosonic acid and 3-deoxy-lyxo-2-heptulosaric acid in the cell wall (theca) of the green alga Tetraselmis striata Butcher (Prasinophyceae). , 1989, European journal of biochemistry.

[77]  R. P. John,et al.  Micro and macroalgal biomass: a renewable source for bioethanol. , 2011, Bioresource technology.

[78]  R. Usami,et al.  Organic solvent tolerance of halophilic α-amylase from a Haloarchaeon, Haloarcula sp. strain S-1 , 2005, Extremophiles.

[79]  S. Puig,et al.  Biological nutrient removal in a sequencing batch reactor using ethanol as carbon source. , 2007 .