Magnetic Refrigeration: Current Progress in Magnetocaloric Properties of Perovskite Manganite Materials

[1]  S. Atalay,et al.  Influence of Ti substitution on magnetic and magnetocaloric properties of Pr_2Fe_17-xTi_x intermetallic compounds , 2023, Journal of Materials Science: Materials in Electronics.

[2]  Xinyu Jiang,et al.  Room-temperature structure, magnetic, and magnetocaloric properties of (La0.8-xNdx)Sr0.2MnO3(0 ≤ x ≤ 0.2) , 2022, Journal of Materials Research and Technology.

[3]  Zhengguang Zou,et al.  Structural, Magnetic, Magnetocaloric, Investigations on La0.8-xKxSr0.2Mn0.95Ni0.05O3 (x = 0.05, 0.10 and 0.15) at Room Temperature , 2022, Journal of Magnetism and Magnetic Materials.

[4]  S. Atalay,et al.  Structural, magnetic and magnetocaloric properties of Ru doped Pr0.67Ca0.33Mn1 − xRuxO3 manganites , 2022, Journal of Materials Science: Materials in Electronics.

[5]  W. Zuo,et al.  Unified understanding of the first-order nature of the transition in TbCo2 , 2022, Physical Review B.

[6]  Zhengguang Zou,et al.  Structural, magnetic, and magnetocaloric properties of La0.7Sr0.2Nd0.1Mn1-xNixO3 (x= 0.05, 0.10, and 0.15): B-site doping , 2022, Physica B: Condensed Matter.

[7]  Dai‐Sik Kim,et al.  Magnetocaloric Properties and Critical Behavior of Magnetic Phase Transition in La(Fe0.94-Xnixco0.06)11.4si1.6b0.25 Alloys , 2022, SSRN Electronic Journal.

[8]  Zhengguang Zou,et al.  Research Progress of Doped Manganite Materials in Magnetic Refrigeration , 2021, Frontiers in Materials.

[9]  Selda Kılıç Çetin,et al.  Role of nickel doping on magnetocaloric properties of La0.7Sr0.3Mn1−xNixO3 manganites , 2021, Journal of Materials Science: Materials in Electronics.

[10]  S. Rashidi,et al.  Magnetocaloric Materials , 2021, Reference Module in Materials Science and Materials Engineering.

[11]  Akshay Kumar,et al.  Large magnetocaloric effects in Pr-doped La1.4-xPrxCa1.6Mn2O7 bilayer manganites , 2020 .

[12]  M. Yan,et al.  Magnetic properties and excellent cryogenic magnetocaloric performances in B-site ordered RE2ZnMnO6 (RE = Gd, Dy and Ho) perovskites , 2020 .

[13]  M. Bouazizi,et al.  Structural Analysis and Theoretical Investigations of the Magnetocaloric Effect for La0.7Ba0.15Ag0.15MnO3 Manganite Prepared Using Sol-Gel Route , 2020, Journal of Superconductivity and Novel Magnetism.

[14]  Selda Kılıç Çetin Direct measurement of adiabatic temperature change in (La0.7Sm0.3)0.67Ba0.33MnO3 , 2020, Journal of Materials Science: Materials in Electronics.

[15]  M. Bouazizi,et al.  Correlation between magnetic and electrical properties of La0.7Ba0.15Ag0.15MnO3 manganite prepared by sol gel method , 2020, Applied Physics A.

[16]  Yaming Wang,et al.  Crystal structure, magnetic properties, and magnetocaloric effect in B-site disordered RE2CrMnO6 (RE = Ho and Er) perovskites , 2020, Ceramics International.

[17]  I. A. Abdel-Latif Crystal structure and electrical transport of nano-crystalline strontium-doped neodymium ortho-ferrites , 2020, Journal of Nanoparticle Research.

[18]  A. Fortes,et al.  Basal plane ferromagnetism in the rhombohedral manganite La0.85Ag0.15MnO3+δ , 2020 .

[19]  S. K. Çetin,et al.  Effect of B site partial Ru substitution on structural magnetic and magnetocaloric properties in La0.7Pb0.3Mn1-xRuxO3 (x = 0.0, 0.1 and 0.2) perovskite system , 2020 .

[20]  S. K. Çetin Reversible Magnetocaloric Effect of (La0.8Pr0.2)0.67Ba0.33MnO3 from Direct Measurements , 2019, Journal of Superconductivity and Novel Magnetism.

[21]  Xu-Guang Zheng,et al.  Evolution of Griffiths phase and spin reorientation in perovskite manganites , 2019 .

[22]  S. K. Çetin,et al.  Impact of small Er rare earth element substitution on magnetocaloric properties of (La0.9Er0.1)0.67Pb0.33MnO3 perovskite , 2019, Journal of Molecular Structure.

[23]  J. Suñol,et al.  NiMn-based Heusler magnetic shape memory alloys: a review , 2019, The International Journal of Advanced Manufacturing Technology.

[24]  S. K. Çetin,et al.  Structural, Magnetic, and Magnetocaloric Properties of Pb-Substituted La0.7(Te1-xPbx)0.3MnO3 (0.0 ≤ x ≤ 0.3) Manganites , 2019, Journal of Superconductivity and Novel Magnetism.

[25]  A. Pan,et al.  Incorporating Large A Cations into Lead Iodide Perovskite Cages: Relaxed Goldschmidt Tolerance Factor and Impact on Exciton–Phonon Interaction , 2019, ACS central science.

[26]  P. Sivaprakash,et al.  Electrical resistivity, magnetic and magneto-caloric studies on perovskite manganites Nd1−xCdxMnO3 (x = 0 and 0.1) polycrystals , 2019, Journal of Magnetism and Magnetic Materials.

[27]  M. Akyol The role of adding GdCrO3 in multiferroic CoCr2O4 nanoparticles , 2019, Journal of Materials Science: Materials in Electronics.

[28]  Qiang Wang,et al.  Magnetic transition and magnetocaloric effect of Gd4Sb3-xRx (R=Si, Ge, Sn, 0 ≤ x ≤ 0.75) compounds , 2019, AIP Advances.

[29]  V. Chaudhary,et al.  Iron and manganese based magnetocaloric materials for near room temperature thermal management , 2019, Progress in Materials Science.

[30]  Ali Osman Ayaş Observation of Room-Temperature Range Magnetocaloric Effect in PrSr1−xPbxMn2O6 (0.4 ≤ x ≤ 0.6) Double-Perovskite Manganite System , 2019 .

[31]  W. Qi,et al.  Three models of magnetic ordering in typical magnetic materials , 2018, Physics Reports.

[32]  Ali Osman Ayaş Structural and magnetic properties with reversible magnetocaloric effect in PrSr1–xPbxMn2O6 (0.1 ≤ x ≤ 0.3) double perovskite manganite structures , 2018, Philosophical Magazine.

[33]  Victorino Franco,et al.  Magnetocaloric effect: From materials research to refrigeration devices , 2018 .

[34]  M. Acet,et al.  Effect of Pr-substitution on the structural, magnetic and magnetocaloric properties of (La1-xPrx)0.67Pb0.33MnO3 (0.0 ≤ x ≤ 0.3) manganites , 2017 .

[35]  M. Koubaa,et al.  Structural, magnetic, magnetocaloric and critical behavior investigations of La0.65Dy0.05Sr0.3MnO3 manganite , 2017 .

[36]  S. K. Çetin,et al.  Structural, magnetic and magnetocaloric properties of (La1−xSmx)0.85K0.15MnO3 (x = 0.0, 0.1, 0.2 and 0.3) perovskite manganites , 2017 .

[37]  A. Ekicibil,et al.  Magnetic field dependence of magnetic coupling in CoCr 2 O 4 nanoparticles , 2017 .

[38]  Kun Zhang,et al.  Microstructure, martensitic transformation and mechanical properties of Ni–Mn–Sn alloys by substituting Fe for Ni , 2017 .

[39]  Ali Osman Ayaş (La0.9Gd0.1)0.85Ag0.15MnO3 Manyetik Soğutucu Malzemede Kısmi Gd Değişiminin Yapısal, Manyetik ve Manyetik Soğutma Özellikleri Üzerine Etkisi , 2017 .

[40]  E. Dhahri,et al.  Structural properties, electrical behavior and estimation of the magnetocaloric effect in La0.6Sr0.4Mn0.9V0.1O3 compound from resistivity and phenomenological model , 2017, Journal of Materials Science: Materials in Electronics.

[41]  S. K. Çetin,et al.  Effect of Monovalent Cation Doping on Structural, Magnetic, and Magnetocaloric Properties of Pr0.85A0.15MnO3 (A = Ag and K) Manganites , 2017 .

[42]  W. Qi,et al.  Study of magnetic ordering in the perovskite manganites Pr0.6Sr0.4CrxMn1-xO3 , 2017 .

[43]  Orhan Ekren,et al.  Numerical analysis of a near-room-temperature magnetic cooling system , 2017 .

[44]  P. Fournier,et al.  Review of the Magnetocaloric Effect in RMnO3 and RMn2O5 Multiferroic Crystals , 2017 .

[45]  Y. Elerman,et al.  Room temperature magnetocaloric effect in Pr1.75Sr1.25Mn2O7 double-layered perovskite manganite system , 2017 .

[46]  S. K. Çetin,et al.  Determination of Magnetocaloric Effect in La0.67Ba0.33MnO3from Direct and Indirect Measurements , 2017 .

[47]  S. Mahana,et al.  Giant magnetocaloric effect in GdAlO3 and a comparative study with GdMnO3 , 2017 .

[48]  W. Cheikhrouhou-Koubaa,et al.  Normal and inverse magnetocaloric effect and short-range ferromagnetic interaction in (Pr,Sm)0.5Sr0.5MnO3 phase separated manganite , 2016 .

[49]  S. K. Çetin,et al.  Magnetocaloric properties of (La1−xPrx)0.85K0.15MnO3 (x=0.0, 0.1, 0.3 and 0.5) perovskite manganites , 2016 .

[50]  L. Bessais,et al.  Structure, magnetic and magnetocaloric properties of new nanocrystalline (Pr,Dy)Fe9 compounds , 2016 .

[51]  Y. Aydogdu,et al.  The effect of Sn content on mechanical, magnetization and shape memory behavior in NiMnSn alloys , 2016 .

[52]  A. Galca,et al.  Structural, magnetic and magnetocaloric effects in epitaxial La0.67Ba0.33Ti0.02Mn0.98O3 ferromagnetic thin films grown on 001-oriented SrTiO3 substrates. , 2016, Dalton transactions.

[53]  Alexander M. Tishin,et al.  A review and new perspectives for the magnetocaloric effect: New materials and local heating and cooling inside the human body , 2016 .

[54]  S. Atalay,et al.  Structural, Magnetic and Magnetocaloric Properties of Pr0.68Ca0.32−xBixMnO3 (x = 0, 0.1, 0.18, 0.26 and 0.32) Compounds , 2016, Journal of Superconductivity and Novel Magnetism.

[55]  C. Aprea,et al.  Magnetic refrigeration: a promising new technology for energy saving , 2016 .

[56]  R. Palgrave,et al.  On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system , 2016, Chemical science.

[57]  A. Ekicibil,et al.  Structural and magnetic properties with large reversible magnetocaloric effect in (La1-xPrx)0.85Ag0.15MnO3 (0.0 ≤ x ≤ 0.5) compounds , 2016 .

[58]  C. Viappiani,et al.  Millisecond direct measurement of the magnetocaloric effect of a Fe2P-based compound by the mirage effect , 2016 .

[59]  V. Meunier,et al.  Electronic, structural and magnetic properties of LaMnO3 phase transition at high temperature , 2016, 1601.00687.

[60]  W. Qi,et al.  Antiferromagnetic coupling between Mn3+ and Mn2+ cations in Mn‐doped spinel ferrites , 2015 .

[61]  P. Fournier,et al.  Magnetocaloric properties of the hexagonal HoMnO3 single crystal revisited , 2015 .

[62]  Mehmet Acet,et al.  Magnetocaloric effect in (La1−xSmx)0.67Pb0.33MnO3 (0 ≤ x ≤ 0.3) manganites near room temperature , 2015 .

[63]  Mohamed Koubaa,et al.  Structural, magnetic and magnetocaloric properties of K-doped Pr0.8Na0.2−xKxMnO3 manganites , 2015 .

[64]  M. Koubaa,et al.  Impact of a small amount of vacancy in both lanthanum and calcium on the physical properties of nanocrystalline La0.7Ca0.3MnO3 manganite , 2015 .

[65]  A. A. Coelho,et al.  Magnetic and magnetocaloric properties of La$_{0.6}$Ca$_{0.4}$MnO$_{3}$ tunable by particle size and dimensionality , 2015, 1508.03384.

[66]  V. Chaudhary,et al.  High Relative Cooling Power in a Multiphase Magnetocaloric FeNiB Alloy , 2015, IEEE Magnetics Letters.

[67]  P. V. Reddy,et al.  Influence of Eu doping on magnetocaloric behavior of La0.67Sr0.33MnO3 , 2015 .

[68]  A. Lopes,et al.  Influence of short time milling in R5(Si,Ge)4, R = Gd and Tb, magnetocaloric materials , 2015, 1505.02573.

[69]  B. Shen,et al.  Eu doping-induced enhancement of magnetocaloric effect in manganite La1.4Ca1.6Mn2O7 , 2015 .

[70]  R. M’nassri,et al.  Impact of sintering temperature on the magnetic and magnetocaloric properties in Pr0.5Eu0.1Sr0.4MnO3 manganites , 2015 .

[71]  S. K. Çetin,et al.  Magnetocaloric Properties of La0.85Ag0.15MnO3 and (La0.80Pr0.20)0.85Ag0.15MnO3 Compounds , 2015 .

[72]  M. Triki,et al.  A-site-deficiency-dependent structural, magnetic and magnetoresistance properties in the Pr0.6Sr0.4MnO3 manganites , 2015 .

[73]  E. Dhahri,et al.  Effect of Ni-doping on structural, magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3Mn1−xNixO3 nanocrystalline manganites synthesized by Pechini sol–gel method , 2014 .

[74]  I. Sridhar,et al.  Magnetocaloric properties and critical behavior of high relative cooling power FeNiB nanoparticles , 2014 .

[75]  Anthony K. Cheetham,et al.  Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog , 2014 .

[76]  S. Tidrow Mapping Comparison of Goldschmidt's Tolerance Factor with Perovskite Structural Conditions , 2014 .

[77]  R. Cherif,et al.  Study of magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3MnO3 and La0.6Pr0.1Ba0.3Mn0.9Fe0.1O3 perovskite-type manganese oxides , 2014, Journal of Materials Science.

[78]  Sangam Banerjee,et al.  Effect of excess Ni on martensitic transition, exchange bias and inverse magnetocaloric effect in Ni2+xMn1.4−xSn0.6 alloy , 2014 .

[79]  M. S. Anwar,et al.  Effect of sintering temperature on structure, magnetic and magnetocaloric properties of La0.6Ca0.4MnO3 manganite , 2014 .

[80]  N. van Dijk,et al.  Direct measurement of the magnetocaloric effect in MnFe(P,X)(X = As, Ge, Si) materials , 2014 .

[81]  R. Hadimani,et al.  Evolution of Griffith's phase in La0.4Bi0.6Mn1−xTixO3 perovskite oxide , 2014 .

[82]  Andrej Kitanovski,et al.  Experimental comparison of multi-layered La–Fe–Co–Si and single-layered Gd active magnetic regenerators for use in a room-temperature magnetic refrigerator , 2014 .

[83]  M. A. Hamad Simulation of Magnetocaloric Effect in La0.7Ca0.3MnO3 Ceramics Fabricated by Fast Sintering Process , 2014 .

[84]  S. Atalay,et al.  Production of LaCaMnO_3 Composite by Ball Milling , 2014 .

[85]  Piotr A. Domanski,et al.  Review of alternative cooling technologies , 2013 .

[86]  M. Ghazi,et al.  Tunable magnetic and magnetocaloric properties of La0.6Sr0.4MnO3 nanoparticles , 2013 .

[87]  M. Acet,et al.  Reversibility in the adiabatic temperature-change of Pr0.73Pb0.27MnO3 , 2013 .

[88]  V. Awana,et al.  Impact of sintering temperature on room temperature magneto-resistive and magneto-caloric properties of Pr2/3Sr1/3MnO3 , 2013, 1306.6792.

[89]  Anders Smith Who discovered the magnetocaloric effect? , 2013 .

[90]  S. Dou,et al.  Effects of Cu substitution on structural and magnetic properties of La0.7Pr0.3Fe11.4Si1.6 compounds , 2013 .

[91]  C. Au,et al.  Review of magnetocaloric effect in perovskite-type oxides , 2013 .

[92]  A. Piqué,et al.  Impact of reduced dimensionality on the magnetic and magnetocaloric response of La0.7Ca0.3MnO3 , 2013 .

[93]  J. Romero Gómez,et al.  Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration , 2013 .

[94]  Oliver Gutfleisch,et al.  Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.

[95]  J. M. Kim,et al.  Evidence of the Griffiths phase in multiferroic BiMnO3 and BiFe0.5Mn0.5O3 films , 2012 .

[96]  J. Attfield,et al.  Cation-size-mismatch tuning of photoluminescence in oxynitride phosphors. , 2012, Journal of the American Chemical Society.

[97]  T. Phan,et al.  Tunable magnetocaloric effect near room temperature in La0.7-xPrxSr0.3MnO3 (0.02 ≤ x ≤ 0.30) manganites , 2012 .

[98]  Y. Elerman,et al.  Effects of manganese doping on magnetocaloric effect in Ge-rich Gd5Ge2.05Si1.95 alloy , 2012 .

[99]  S. Atalay,et al.  THE VARIATION OF EXCHANGE CONSTANT AND MAGNETOCALORIC EFFECT IN LaFe13-xSix (x = 1.6, 1.9 AND 2.2) COMPOUNDS , 2011 .

[100]  T. Fırat,et al.  The Structural, Superconducting and Transport Properties of the Compounds Y3Ba5Cu8O18 and Y3Ba5Ca2Cu8O18 , 2011 .

[101]  S. Aksoy,et al.  Effect of high temperature sintering on the structural and the magnetic properties of La1.4Ca1.6Mn2O7 , 2011 .

[102]  K. Gschneidner,et al.  Effect of Ca on the microstructure and magnetocaloric effects in the La1−xCaxFe11.5Si1.5 compounds , 2011 .

[103]  M. Boudard,et al.  Size mismatch, grain boundary and bandwidth effects on structural, magnetic and electrical properties of Pr0.67Ba0.33MnO3 and Pr0.67Sr0.33MnO3 perovskites , 2011 .

[104]  M. Koubaa,et al.  Magnetic and magnetocaloric properties of lanthanum manganites with monovalent elements doping at A-site , 2011 .

[105]  O. Peña,et al.  Room temperature magnetic and magnetocaloric properties of La0.67Ba0.33Mn0.98Ti0.02O3 perovskite , 2010 .

[106]  N. Pryds,et al.  The persistence of the magnetocaloric effect in (La1−xAx)0.67Ba0.33Mn1.05O3−δ , 2010 .

[107]  Andrew Kusiak,et al.  Modeling and optimization of HVAC energy consumption , 2010 .

[108]  T. Hashimoto,et al.  Jahn-Teller distortion and magnetic structure in LaMnO 3 : A first-principles theoretical study with full structure optimizations , 2010 .

[109]  A. Nayak,et al.  Magnetic, electrical, and magnetothermal properties in Ni–Co–Mn–Sb Heusler alloys , 2010 .

[110]  Z. Jagličić,et al.  The influence of the heat treatment on the structural and magnetic properties of nanoparticle La0.7Ca0.3MnO3 prepared by glycine–nitrate method , 2010 .

[111]  M. Balli,et al.  Neutron diffraction study of LaFe11.31Si1.69 and LaFe11.31Si1.69H1.45 compounds , 2010 .

[112]  E. Koch,et al.  Origin of Jahn-Teller distortion and orbital order in LaMnO3. , 2009, Physical review letters.

[113]  V. Franco,et al.  Field dependence of the adiabatic temperature change in second order phase transition materials: Application to Gd , 2009 .

[114]  A. Nayak,et al.  Observation of enhanced exchange bias behaviour in NiCoMnSb Heusler alloys , 2009, 1006.0071.

[115]  Jinwei Wang,et al.  Structure and magnetic properties of shortly high temperature annealing LaFe11.6Si1.4 compound , 2009 .

[116]  K. K. Nielsen,et al.  Magnetic cooling at Risoe DTU , 2009, 0902.0812.

[117]  Y. Sun,et al.  Magnetocaloric effect and Griffiths-like phase in La0.67Sr0.33MnO3 nanoparticles , 2008 .

[118]  V. V. Rao,et al.  Effect of nanometric grain size on electronic-transport, magneto-transport and magnetic properties of La0.7Ba0.3MnO3 nanoparticles , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[119]  W. Su,et al.  Metamagnetic phase transitions in perovskite manganites , 2008 .

[120]  V. Franco,et al.  A universal curve for the magnetocaloric effect: an analysis based on scaling relations , 2008 .

[121]  N. Trung,et al.  Structure, magnetism, and magnetocaloric properties of MnFeP1−xSix compounds , 2008 .

[122]  X. Ren,et al.  Noncubic crystallographic symmetry of a cubic ferromagnet: Simultaneous structural change at the ferromagnetic transition , 2008 .

[123]  Luis Pérez-Lombard,et al.  A review on buildings energy consumption information , 2008 .

[124]  P. Levy,et al.  Magnetic interactions in ferromagnetic manganite nanotubes of different diameters , 2007 .

[125]  P. Dutta,et al.  Effect of nanometric grain size on room temperature magnetoimpedance, magnetoresistance, and magnetic properties of La0.7Sr0.3MnO3 nanoparticles , 2007 .

[126]  H. Pastoriza,et al.  Magnetism of manganite nanotubes constituted by assembled nanoparticles , 2007 .

[127]  M. Tachibana,et al.  Jahn-Teller distortion and magnetic transitions in perovskiteRMnO3(R=Ho, Er, Tm, Yb, and Lu) , 2007 .

[128]  Jun-qing Li,et al.  Influence of boron on the giant magnetocaloric effect of La(Fe0.9Si0.1)13 , 2007 .

[129]  Seong-Cho Yu,et al.  Review of the magnetocaloric effect in manganite materials , 2007 .

[130]  W. Ao,et al.  Hydrothermal synthesis and magnetocaloric effect of La0.7Ca0.2Sr0.1MnO3 , 2006 .

[131]  Sébastien Vasseur,et al.  Lanthanum manganese perovskite nanoparticles as possible in vivo mediators for magnetic hyperthermia , 2006 .

[132]  P. Saines,et al.  The Jahn–Teller distortion and cation ordering in the perovskite Sr2MnSbO6 , 2006 .

[133]  X. Moya,et al.  Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys , 2006 .

[134]  F. D. Boer,et al.  Magnetic properties and magnetic-entropy change of MnFeP0.5As0.5-xSix(x=0-0.3) compounds , 2006 .

[135]  T. Asano,et al.  Effects of Heat Treatment on the Magnetic Phase Transition and Magnetocaloric Properties of Mn1+δAs1−xSbx , 2006 .

[136]  L. P. Cardoso,et al.  Structural and magnetic study of the MnAs magnetocaloric compound , 2006 .

[137]  K. Gschneidner,et al.  Reducing the operational magnetic field in the prototype magnetocaloric system Gd5Ge4 by approaching the single cluster size limit , 2006 .

[138]  S. Fujieda,et al.  Large magnetocaloric effects and thermal transport properties of La(FeSi)13 and their hydrides , 2006 .

[139]  B. Dabrowski,et al.  Specific heat anomalies in La 1 − x Sr x Mn O 3 ( 0.12 ⩽ x ⩽ 0.2 ) , 2005 .

[140]  S. Allen,et al.  The ferromagnetic shape-memory effect in Ni–Mn–Ga , 2005 .

[141]  J. Vieira,et al.  Magnetocaloric effect in Er- and Eu-substituted ferromagnetic La-Sr manganites , 2005 .

[142]  A. Tishin,et al.  Thermodynamic model of the magnetocaloric effect near the first-order magnetic phase transitions , 2005 .

[143]  S. Atalay,et al.  Magnetocaloric effect in the La0.62Bi0.05Ca0.33MnO3 compound , 2005 .

[144]  N. Nakayama,et al.  New method for the production of bulk amorphous materials of Nd-Fe-B alloys , 2005 .

[145]  M. Phan,et al.  Excellent magnetocaloric properties of La0.7Ca0.3−xSrxMnO3(0.05⩽x⩽0.25) single crystals , 2005 .

[146]  Ziyu Wu,et al.  O 2p hole-assisted electronic processes in the Pr1-xSrxMnO3 (x=0.0, 0.3) system , 2004 .

[147]  S. Gama,et al.  Pressure-induced colossal magnetocaloric effect in MnAs. , 2004, Physical review letters.

[148]  V. Amaral,et al.  Magnetoelastic coupling influence on the magnetocaloric effect in ferromagnetic materials , 2004 .

[149]  M. Fardis,et al.  Spin-polarized oxygen hole states in cation-deficient La1 − xCaxMnO3 + δ , 2003, cond-mat/0310101.

[150]  Anibal T. de Almeida,et al.  Market transformation of energy-efficient motor technologies in the EU , 2003 .

[151]  S. Fujieda,et al.  Itinerant-electron Metamagnetic Transition and Large Magnetocaloric Effects in La(FexSi1-x)13 Compounds and Their Hydrides , 2003 .

[152]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[153]  M. Koblischka,et al.  Perovskite manganites: potential materials for magnetic cooling at or near room temperature , 2002 .

[154]  N. P. Thuy Preparation and magneto-caloric effect of La1−xAgxMnO3 (x=0.10–0.30) perovskite compounds , 2002 .

[155]  J. Rivas,et al.  Drop of magnetocaloric effect related to the change from first- to second-order magnetic phase transition in La2/3(Ca1−xSrx)1/3MnO3 , 2002 .

[156]  C. Dubourdieu,et al.  Neutron diffraction, NMR and magneto-transport properties in the Pr0.6Sr0.4MnO3 perovskite manganite , 2002 .

[157]  H. Wada,et al.  Giant magnetocaloric effect of MnAs1−xSbx , 2001 .

[158]  F. Hu,et al.  Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 , 2001 .

[159]  H. Wakai The phase separation due to A-site-cation size mismatch in La0.5Ca0.5-xBaxMnO3 , 2001 .

[160]  Chunhua Yan,et al.  Soft chemical synthesis and transport properties of La0.7Sr0.3MnO3 granular perovskites , 2000 .

[161]  M. T. Casais,et al.  Evolution of the Jahn-Teller distortion of MnO6 octahedra in RMnO3 perovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): a neutron diffraction study. , 2000, Inorganic chemistry.

[162]  M. Itoh,et al.  ROLE OF SIZE MISMATCH OF A-SITE CATIONS ON THE FIRST-ORDER TRANSITION IN MANGANATES , 1999 .

[163]  V. Pecharsky,et al.  Recent Developments in Magnetic Refrigeration , 1999 .

[164]  Vitalij K. Pecharsky,et al.  MAGNETOCALORIC EFFECT AND HEAT CAPACITY IN THE PHASE-TRANSITION REGION , 1999 .

[165]  X. Obradors,et al.  HIGH-FIELD MAGNETORESISTANCE AT INTERFACES IN MANGANESE PEROVSKITES , 1998 .

[166]  L. M. Rodriguez-Martinez,et al.  Cation disorder and the metal-insulator transition temperature in manganese oxide perovskites , 1998 .

[167]  X. Y. Liu,et al.  Effect of sample preparation on the magnetic and magnetocaloric properties of amorphous Gd70Ni30 , 1998 .

[168]  J. Rodríguez-Carvajal,et al.  Neutron-diffraction study of the Jahn-Teller transition in stoichiometric LaMnO 3 , 1998 .

[169]  F. Fauth,et al.  ANTIPARALLEL ORDERING OF MN AND ND MAGNETIC MOMENTS IN ND0.7BA0.3MNO3 , 1997 .

[170]  H. Sohn,et al.  EVIDENCE FOR O2P HOLE-DRIVEN CONDUCTIVITY IN LA1-XSRXMNO3 (0 X 0.7) AND LA0.7SR0.3MNOZ THIN FILMS , 1997 .

[171]  K. Gschneidner,et al.  Phase relationships and crystallography in the pseudobinary system Gd5Si4Gd5Ge4 , 1997 .

[172]  A. Maignan,et al.  Effect of A -site cation size mismatch on charge ordering and colossal magnetoresistance properties of perovskite manganites , 1997 .

[173]  P. Bénard,et al.  Comparison of magnetocaloric properties from magnetic and thermal measurements , 1997 .

[174]  K. Gschneidner,et al.  Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .

[175]  R. Chahine,et al.  A sample translatory type insert for automated magnetocaloric effect measurements , 1997 .

[176]  R. Chahine,et al.  Composite materials for Ericsson-like magnetic refrigeration cycle , 1997 .

[177]  M. Lees,et al.  A New Monoclinic Perovskite Allotype in Pr0.6Sr0.4MnO3 , 1996 .

[178]  C. Shek,et al.  Preparation of nanocomposite working substances for room-temperature magnetic refrigeration , 1996 .

[179]  C. Shek,et al.  Magnetic entropy in nanocomposite binary gadolinium alloys , 1996 .

[180]  Mart́ınez,et al.  Colossal magnetoresistance of ferromagnetic manganites: Structural tuning and mechanisms. , 1996, Physical review letters.

[181]  Shraiman,et al.  Dynamic Jahn-Teller Effect and Colossal Magnetoresistance in La 1-xSrxMnO3. , 1995, Physical review letters.

[182]  P. Norby,et al.  The crystal structure of lanthanum manganate(iii), LaMnO3, at room temperature and at 1273 K under N2 , 1995 .

[183]  Kido,et al.  Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3. , 1995, Physical review. B, Condensed matter.

[184]  Littlewood,et al.  Double exchange alone does not explain the resistivity of La1-xSrxMnO3. , 1995, Physical review letters.

[185]  K. Gschneidner,et al.  (Dy0.5Er0.5)Al2: A large magnetocaloric effect material for low‐temperature magnetic refrigeration , 1994 .

[186]  R. Shull Magnetocaloric effect of ferromagnetic particles , 1993 .

[187]  Y. Nie A Note on ‘New Criteria for Polynomial Stability’ , 1991 .

[188]  A. Tishin Working substances for magnetic refrigerators , 1990 .

[189]  A. Tishin Magnetocaloric effect in strong magnetic fields , 1990 .

[190]  M. E. Wood,et al.  General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity , 1985 .

[191]  G. Villeneuve,et al.  Structural and magnetization study of Pr1−xCaxMnO3 , 1980 .

[192]  S. Benford The magnetocaloric effect in dysprosium , 1979 .

[193]  G. V. Brown Magnetic heat pumping near room temperature , 1976 .

[194]  B. Banerjee On a generalised approach to first and second order magnetic transitions , 1964 .

[195]  M. Höhl Magnetische Untersuchungen , 1960 .

[196]  Clarence Zener,et al.  Interaction Between the d Shells in the Transition Metals , 1951 .

[197]  J. H. van Santen,et al.  Ferromagnetic compounds of manganese with perovskite structure , 1950 .