Magnetic Refrigeration: Current Progress in Magnetocaloric Properties of Perovskite Manganite Materials
暂无分享,去创建一个
[1] S. Atalay,et al. Influence of Ti substitution on magnetic and magnetocaloric properties of Pr_2Fe_17-xTi_x intermetallic compounds , 2023, Journal of Materials Science: Materials in Electronics.
[2] Xinyu Jiang,et al. Room-temperature structure, magnetic, and magnetocaloric properties of (La0.8-xNdx)Sr0.2MnO3(0 ≤ x ≤ 0.2) , 2022, Journal of Materials Research and Technology.
[3] Zhengguang Zou,et al. Structural, Magnetic, Magnetocaloric, Investigations on La0.8-xKxSr0.2Mn0.95Ni0.05O3 (x = 0.05, 0.10 and 0.15) at Room Temperature , 2022, Journal of Magnetism and Magnetic Materials.
[4] S. Atalay,et al. Structural, magnetic and magnetocaloric properties of Ru doped Pr0.67Ca0.33Mn1 − xRuxO3 manganites , 2022, Journal of Materials Science: Materials in Electronics.
[5]
W. Zuo,et al.
Unified understanding of the first-order nature of the transition in
[6] Zhengguang Zou,et al. Structural, magnetic, and magnetocaloric properties of La0.7Sr0.2Nd0.1Mn1-xNixO3 (x= 0.05, 0.10, and 0.15): B-site doping , 2022, Physica B: Condensed Matter.
[7] Dai‐Sik Kim,et al. Magnetocaloric Properties and Critical Behavior of Magnetic Phase Transition in La(Fe0.94-Xnixco0.06)11.4si1.6b0.25 Alloys , 2022, SSRN Electronic Journal.
[8] Zhengguang Zou,et al. Research Progress of Doped Manganite Materials in Magnetic Refrigeration , 2021, Frontiers in Materials.
[9] Selda Kılıç Çetin,et al. Role of nickel doping on magnetocaloric properties of La0.7Sr0.3Mn1−xNixO3 manganites , 2021, Journal of Materials Science: Materials in Electronics.
[10] S. Rashidi,et al. Magnetocaloric Materials , 2021, Reference Module in Materials Science and Materials Engineering.
[11] Akshay Kumar,et al. Large magnetocaloric effects in Pr-doped La1.4-xPrxCa1.6Mn2O7 bilayer manganites , 2020 .
[12] M. Yan,et al. Magnetic properties and excellent cryogenic magnetocaloric performances in B-site ordered RE2ZnMnO6 (RE = Gd, Dy and Ho) perovskites , 2020 .
[13] M. Bouazizi,et al. Structural Analysis and Theoretical Investigations of the Magnetocaloric Effect for La0.7Ba0.15Ag0.15MnO3 Manganite Prepared Using Sol-Gel Route , 2020, Journal of Superconductivity and Novel Magnetism.
[14] Selda Kılıç Çetin. Direct measurement of adiabatic temperature change in (La0.7Sm0.3)0.67Ba0.33MnO3 , 2020, Journal of Materials Science: Materials in Electronics.
[15] M. Bouazizi,et al. Correlation between magnetic and electrical properties of La0.7Ba0.15Ag0.15MnO3 manganite prepared by sol gel method , 2020, Applied Physics A.
[16] Yaming Wang,et al. Crystal structure, magnetic properties, and magnetocaloric effect in B-site disordered RE2CrMnO6 (RE = Ho and Er) perovskites , 2020, Ceramics International.
[17] I. A. Abdel-Latif. Crystal structure and electrical transport of nano-crystalline strontium-doped neodymium ortho-ferrites , 2020, Journal of Nanoparticle Research.
[18] A. Fortes,et al. Basal plane ferromagnetism in the rhombohedral manganite La0.85Ag0.15MnO3+δ , 2020 .
[19] S. K. Çetin,et al. Effect of B site partial Ru substitution on structural magnetic and magnetocaloric properties in La0.7Pb0.3Mn1-xRuxO3 (x = 0.0, 0.1 and 0.2) perovskite system , 2020 .
[20] S. K. Çetin. Reversible Magnetocaloric Effect of (La0.8Pr0.2)0.67Ba0.33MnO3 from Direct Measurements , 2019, Journal of Superconductivity and Novel Magnetism.
[21] Xu-Guang Zheng,et al. Evolution of Griffiths phase and spin reorientation in perovskite manganites , 2019 .
[22] S. K. Çetin,et al. Impact of small Er rare earth element substitution on magnetocaloric properties of (La0.9Er0.1)0.67Pb0.33MnO3 perovskite , 2019, Journal of Molecular Structure.
[23] J. Suñol,et al. NiMn-based Heusler magnetic shape memory alloys: a review , 2019, The International Journal of Advanced Manufacturing Technology.
[24] S. K. Çetin,et al. Structural, Magnetic, and Magnetocaloric Properties of Pb-Substituted La0.7(Te1-xPbx)0.3MnO3 (0.0 ≤ x ≤ 0.3) Manganites , 2019, Journal of Superconductivity and Novel Magnetism.
[25] A. Pan,et al. Incorporating Large A Cations into Lead Iodide Perovskite Cages: Relaxed Goldschmidt Tolerance Factor and Impact on Exciton–Phonon Interaction , 2019, ACS central science.
[26] P. Sivaprakash,et al. Electrical resistivity, magnetic and magneto-caloric studies on perovskite manganites Nd1−xCdxMnO3 (x = 0 and 0.1) polycrystals , 2019, Journal of Magnetism and Magnetic Materials.
[27] M. Akyol. The role of adding GdCrO3 in multiferroic CoCr2O4 nanoparticles , 2019, Journal of Materials Science: Materials in Electronics.
[28] Qiang Wang,et al. Magnetic transition and magnetocaloric effect of Gd4Sb3-xRx (R=Si, Ge, Sn, 0 ≤ x ≤ 0.75) compounds , 2019, AIP Advances.
[29] V. Chaudhary,et al. Iron and manganese based magnetocaloric materials for near room temperature thermal management , 2019, Progress in Materials Science.
[30] Ali Osman Ayaş. Observation of Room-Temperature Range Magnetocaloric Effect in PrSr1−xPbxMn2O6 (0.4 ≤ x ≤ 0.6) Double-Perovskite Manganite System , 2019 .
[31] W. Qi,et al. Three models of magnetic ordering in typical magnetic materials , 2018, Physics Reports.
[32] Ali Osman Ayaş. Structural and magnetic properties with reversible magnetocaloric effect in PrSr1–xPbxMn2O6 (0.1 ≤ x ≤ 0.3) double perovskite manganite structures , 2018, Philosophical Magazine.
[33] Victorino Franco,et al. Magnetocaloric effect: From materials research to refrigeration devices , 2018 .
[34] M. Acet,et al. Effect of Pr-substitution on the structural, magnetic and magnetocaloric properties of (La1-xPrx)0.67Pb0.33MnO3 (0.0 ≤ x ≤ 0.3) manganites , 2017 .
[35] M. Koubaa,et al. Structural, magnetic, magnetocaloric and critical behavior investigations of La0.65Dy0.05Sr0.3MnO3 manganite , 2017 .
[36] S. K. Çetin,et al. Structural, magnetic and magnetocaloric properties of (La1−xSmx)0.85K0.15MnO3 (x = 0.0, 0.1, 0.2 and 0.3) perovskite manganites , 2017 .
[37] A. Ekicibil,et al. Magnetic field dependence of magnetic coupling in CoCr 2 O 4 nanoparticles , 2017 .
[38] Kun Zhang,et al. Microstructure, martensitic transformation and mechanical properties of Ni–Mn–Sn alloys by substituting Fe for Ni , 2017 .
[39] Ali Osman Ayaş. (La0.9Gd0.1)0.85Ag0.15MnO3 Manyetik Soğutucu Malzemede Kısmi Gd Değişiminin Yapısal, Manyetik ve Manyetik Soğutma Özellikleri Üzerine Etkisi , 2017 .
[40] E. Dhahri,et al. Structural properties, electrical behavior and estimation of the magnetocaloric effect in La0.6Sr0.4Mn0.9V0.1O3 compound from resistivity and phenomenological model , 2017, Journal of Materials Science: Materials in Electronics.
[41] S. K. Çetin,et al. Effect of Monovalent Cation Doping on Structural, Magnetic, and Magnetocaloric Properties of Pr0.85A0.15MnO3 (A = Ag and K) Manganites , 2017 .
[42] W. Qi,et al. Study of magnetic ordering in the perovskite manganites Pr0.6Sr0.4CrxMn1-xO3 , 2017 .
[43] Orhan Ekren,et al. Numerical analysis of a near-room-temperature magnetic cooling system , 2017 .
[44] P. Fournier,et al. Review of the Magnetocaloric Effect in RMnO3 and RMn2O5 Multiferroic Crystals , 2017 .
[45] Y. Elerman,et al. Room temperature magnetocaloric effect in Pr1.75Sr1.25Mn2O7 double-layered perovskite manganite system , 2017 .
[46] S. K. Çetin,et al. Determination of Magnetocaloric Effect in La0.67Ba0.33MnO3from Direct and Indirect Measurements , 2017 .
[47] S. Mahana,et al. Giant magnetocaloric effect in GdAlO3 and a comparative study with GdMnO3 , 2017 .
[48] W. Cheikhrouhou-Koubaa,et al. Normal and inverse magnetocaloric effect and short-range ferromagnetic interaction in (Pr,Sm)0.5Sr0.5MnO3 phase separated manganite , 2016 .
[49] S. K. Çetin,et al. Magnetocaloric properties of (La1−xPrx)0.85K0.15MnO3 (x=0.0, 0.1, 0.3 and 0.5) perovskite manganites , 2016 .
[50] L. Bessais,et al. Structure, magnetic and magnetocaloric properties of new nanocrystalline (Pr,Dy)Fe9 compounds , 2016 .
[51] Y. Aydogdu,et al. The effect of Sn content on mechanical, magnetization and shape memory behavior in NiMnSn alloys , 2016 .
[52] A. Galca,et al. Structural, magnetic and magnetocaloric effects in epitaxial La0.67Ba0.33Ti0.02Mn0.98O3 ferromagnetic thin films grown on 001-oriented SrTiO3 substrates. , 2016, Dalton transactions.
[53] Alexander M. Tishin,et al. A review and new perspectives for the magnetocaloric effect: New materials and local heating and cooling inside the human body , 2016 .
[54] S. Atalay,et al. Structural, Magnetic and Magnetocaloric Properties of Pr0.68Ca0.32−xBixMnO3 (x = 0, 0.1, 0.18, 0.26 and 0.32) Compounds , 2016, Journal of Superconductivity and Novel Magnetism.
[55] C. Aprea,et al. Magnetic refrigeration: a promising new technology for energy saving , 2016 .
[56] R. Palgrave,et al. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system , 2016, Chemical science.
[57] A. Ekicibil,et al. Structural and magnetic properties with large reversible magnetocaloric effect in (La1-xPrx)0.85Ag0.15MnO3 (0.0 ≤ x ≤ 0.5) compounds , 2016 .
[58] C. Viappiani,et al. Millisecond direct measurement of the magnetocaloric effect of a Fe2P-based compound by the mirage effect , 2016 .
[59] V. Meunier,et al. Electronic, structural and magnetic properties of LaMnO3 phase transition at high temperature , 2016, 1601.00687.
[60] W. Qi,et al. Antiferromagnetic coupling between Mn3+ and Mn2+ cations in Mn‐doped spinel ferrites , 2015 .
[61] P. Fournier,et al. Magnetocaloric properties of the hexagonal HoMnO3 single crystal revisited , 2015 .
[62] Mehmet Acet,et al. Magnetocaloric effect in (La1−xSmx)0.67Pb0.33MnO3 (0 ≤ x ≤ 0.3) manganites near room temperature , 2015 .
[63] Mohamed Koubaa,et al. Structural, magnetic and magnetocaloric properties of K-doped Pr0.8Na0.2−xKxMnO3 manganites , 2015 .
[64] M. Koubaa,et al. Impact of a small amount of vacancy in both lanthanum and calcium on the physical properties of nanocrystalline La0.7Ca0.3MnO3 manganite , 2015 .
[65] A. A. Coelho,et al. Magnetic and magnetocaloric properties of La$_{0.6}$Ca$_{0.4}$MnO$_{3}$ tunable by particle size and dimensionality , 2015, 1508.03384.
[66] V. Chaudhary,et al. High Relative Cooling Power in a Multiphase Magnetocaloric FeNiB Alloy , 2015, IEEE Magnetics Letters.
[67] P. V. Reddy,et al. Influence of Eu doping on magnetocaloric behavior of La0.67Sr0.33MnO3 , 2015 .
[68] A. Lopes,et al. Influence of short time milling in R5(Si,Ge)4, R = Gd and Tb, magnetocaloric materials , 2015, 1505.02573.
[69] B. Shen,et al. Eu doping-induced enhancement of magnetocaloric effect in manganite La1.4Ca1.6Mn2O7 , 2015 .
[70] R. M’nassri,et al. Impact of sintering temperature on the magnetic and magnetocaloric properties in Pr0.5Eu0.1Sr0.4MnO3 manganites , 2015 .
[71] S. K. Çetin,et al. Magnetocaloric Properties of La0.85Ag0.15MnO3 and (La0.80Pr0.20)0.85Ag0.15MnO3 Compounds , 2015 .
[72] M. Triki,et al. A-site-deficiency-dependent structural, magnetic and magnetoresistance properties in the Pr0.6Sr0.4MnO3 manganites , 2015 .
[73] E. Dhahri,et al. Effect of Ni-doping on structural, magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3Mn1−xNixO3 nanocrystalline manganites synthesized by Pechini sol–gel method , 2014 .
[74] I. Sridhar,et al. Magnetocaloric properties and critical behavior of high relative cooling power FeNiB nanoparticles , 2014 .
[75] Anthony K. Cheetham,et al. Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog , 2014 .
[76] S. Tidrow. Mapping Comparison of Goldschmidt's Tolerance Factor with Perovskite Structural Conditions , 2014 .
[77] R. Cherif,et al. Study of magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3MnO3 and La0.6Pr0.1Ba0.3Mn0.9Fe0.1O3 perovskite-type manganese oxides , 2014, Journal of Materials Science.
[78] Sangam Banerjee,et al. Effect of excess Ni on martensitic transition, exchange bias and inverse magnetocaloric effect in Ni2+xMn1.4−xSn0.6 alloy , 2014 .
[79] M. S. Anwar,et al. Effect of sintering temperature on structure, magnetic and magnetocaloric properties of La0.6Ca0.4MnO3 manganite , 2014 .
[80] N. van Dijk,et al. Direct measurement of the magnetocaloric effect in MnFe(P,X)(X = As, Ge, Si) materials , 2014 .
[81] R. Hadimani,et al. Evolution of Griffith's phase in La0.4Bi0.6Mn1−xTixO3 perovskite oxide , 2014 .
[82] Andrej Kitanovski,et al. Experimental comparison of multi-layered La–Fe–Co–Si and single-layered Gd active magnetic regenerators for use in a room-temperature magnetic refrigerator , 2014 .
[83] M. A. Hamad. Simulation of Magnetocaloric Effect in La0.7Ca0.3MnO3 Ceramics Fabricated by Fast Sintering Process , 2014 .
[84] S. Atalay,et al. Production of LaCaMnO_3 Composite by Ball Milling , 2014 .
[85] Piotr A. Domanski,et al. Review of alternative cooling technologies , 2013 .
[86] M. Ghazi,et al. Tunable magnetic and magnetocaloric properties of La0.6Sr0.4MnO3 nanoparticles , 2013 .
[87] M. Acet,et al. Reversibility in the adiabatic temperature-change of Pr0.73Pb0.27MnO3 , 2013 .
[88] V. Awana,et al. Impact of sintering temperature on room temperature magneto-resistive and magneto-caloric properties of Pr2/3Sr1/3MnO3 , 2013, 1306.6792.
[89] Anders Smith. Who discovered the magnetocaloric effect? , 2013 .
[90] S. Dou,et al. Effects of Cu substitution on structural and magnetic properties of La0.7Pr0.3Fe11.4Si1.6 compounds , 2013 .
[91] C. Au,et al. Review of magnetocaloric effect in perovskite-type oxides , 2013 .
[92] A. Piqué,et al. Impact of reduced dimensionality on the magnetic and magnetocaloric response of La0.7Ca0.3MnO3 , 2013 .
[93] J. Romero Gómez,et al. Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration , 2013 .
[94] Oliver Gutfleisch,et al. Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.
[95] J. M. Kim,et al. Evidence of the Griffiths phase in multiferroic BiMnO3 and BiFe0.5Mn0.5O3 films , 2012 .
[96] J. Attfield,et al. Cation-size-mismatch tuning of photoluminescence in oxynitride phosphors. , 2012, Journal of the American Chemical Society.
[97] T. Phan,et al. Tunable magnetocaloric effect near room temperature in La0.7-xPrxSr0.3MnO3 (0.02 ≤ x ≤ 0.30) manganites , 2012 .
[98] Y. Elerman,et al. Effects of manganese doping on magnetocaloric effect in Ge-rich Gd5Ge2.05Si1.95 alloy , 2012 .
[99] S. Atalay,et al. THE VARIATION OF EXCHANGE CONSTANT AND MAGNETOCALORIC EFFECT IN LaFe13-xSix (x = 1.6, 1.9 AND 2.2) COMPOUNDS , 2011 .
[100] T. Fırat,et al. The Structural, Superconducting and Transport Properties of the Compounds Y3Ba5Cu8O18 and Y3Ba5Ca2Cu8O18 , 2011 .
[101] S. Aksoy,et al. Effect of high temperature sintering on the structural and the magnetic properties of La1.4Ca1.6Mn2O7 , 2011 .
[102] K. Gschneidner,et al. Effect of Ca on the microstructure and magnetocaloric effects in the La1−xCaxFe11.5Si1.5 compounds , 2011 .
[103] M. Boudard,et al. Size mismatch, grain boundary and bandwidth effects on structural, magnetic and electrical properties of Pr0.67Ba0.33MnO3 and Pr0.67Sr0.33MnO3 perovskites , 2011 .
[104] M. Koubaa,et al. Magnetic and magnetocaloric properties of lanthanum manganites with monovalent elements doping at A-site , 2011 .
[105] O. Peña,et al. Room temperature magnetic and magnetocaloric properties of La0.67Ba0.33Mn0.98Ti0.02O3 perovskite , 2010 .
[106] N. Pryds,et al. The persistence of the magnetocaloric effect in (La1−xAx)0.67Ba0.33Mn1.05O3−δ , 2010 .
[107] Andrew Kusiak,et al. Modeling and optimization of HVAC energy consumption , 2010 .
[108] T. Hashimoto,et al. Jahn-Teller distortion and magnetic structure in LaMnO 3 : A first-principles theoretical study with full structure optimizations , 2010 .
[109] A. Nayak,et al. Magnetic, electrical, and magnetothermal properties in Ni–Co–Mn–Sb Heusler alloys , 2010 .
[110] Z. Jagličić,et al. The influence of the heat treatment on the structural and magnetic properties of nanoparticle La0.7Ca0.3MnO3 prepared by glycine–nitrate method , 2010 .
[111] M. Balli,et al. Neutron diffraction study of LaFe11.31Si1.69 and LaFe11.31Si1.69H1.45 compounds , 2010 .
[112] E. Koch,et al. Origin of Jahn-Teller distortion and orbital order in LaMnO3. , 2009, Physical review letters.
[113] V. Franco,et al. Field dependence of the adiabatic temperature change in second order phase transition materials: Application to Gd , 2009 .
[114] A. Nayak,et al. Observation of enhanced exchange bias behaviour in NiCoMnSb Heusler alloys , 2009, 1006.0071.
[115] Jinwei Wang,et al. Structure and magnetic properties of shortly high temperature annealing LaFe11.6Si1.4 compound , 2009 .
[116] K. K. Nielsen,et al. Magnetic cooling at Risoe DTU , 2009, 0902.0812.
[117] Y. Sun,et al. Magnetocaloric effect and Griffiths-like phase in La0.67Sr0.33MnO3 nanoparticles , 2008 .
[118] V. V. Rao,et al. Effect of nanometric grain size on electronic-transport, magneto-transport and magnetic properties of La0.7Ba0.3MnO3 nanoparticles , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.
[119] W. Su,et al. Metamagnetic phase transitions in perovskite manganites , 2008 .
[120] V. Franco,et al. A universal curve for the magnetocaloric effect: an analysis based on scaling relations , 2008 .
[121] N. Trung,et al. Structure, magnetism, and magnetocaloric properties of MnFeP1−xSix compounds , 2008 .
[122] X. Ren,et al. Noncubic crystallographic symmetry of a cubic ferromagnet: Simultaneous structural change at the ferromagnetic transition , 2008 .
[123] Luis Pérez-Lombard,et al. A review on buildings energy consumption information , 2008 .
[124] P. Levy,et al. Magnetic interactions in ferromagnetic manganite nanotubes of different diameters , 2007 .
[125] P. Dutta,et al. Effect of nanometric grain size on room temperature magnetoimpedance, magnetoresistance, and magnetic properties of La0.7Sr0.3MnO3 nanoparticles , 2007 .
[126] H. Pastoriza,et al. Magnetism of manganite nanotubes constituted by assembled nanoparticles , 2007 .
[127] M. Tachibana,et al. Jahn-Teller distortion and magnetic transitions in perovskiteRMnO3(R=Ho, Er, Tm, Yb, and Lu) , 2007 .
[128] Jun-qing Li,et al. Influence of boron on the giant magnetocaloric effect of La(Fe0.9Si0.1)13 , 2007 .
[129] Seong-Cho Yu,et al. Review of the magnetocaloric effect in manganite materials , 2007 .
[130] W. Ao,et al. Hydrothermal synthesis and magnetocaloric effect of La0.7Ca0.2Sr0.1MnO3 , 2006 .
[131] Sébastien Vasseur,et al. Lanthanum manganese perovskite nanoparticles as possible in vivo mediators for magnetic hyperthermia , 2006 .
[132] P. Saines,et al. The Jahn–Teller distortion and cation ordering in the perovskite Sr2MnSbO6 , 2006 .
[133] X. Moya,et al. Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys , 2006 .
[134] F. D. Boer,et al. Magnetic properties and magnetic-entropy change of MnFeP0.5As0.5-xSix(x=0-0.3) compounds , 2006 .
[135] T. Asano,et al. Effects of Heat Treatment on the Magnetic Phase Transition and Magnetocaloric Properties of Mn1+δAs1−xSbx , 2006 .
[136] L. P. Cardoso,et al. Structural and magnetic study of the MnAs magnetocaloric compound , 2006 .
[137] K. Gschneidner,et al. Reducing the operational magnetic field in the prototype magnetocaloric system Gd5Ge4 by approaching the single cluster size limit , 2006 .
[138] S. Fujieda,et al. Large magnetocaloric effects and thermal transport properties of La(FeSi)13 and their hydrides , 2006 .
[139] B. Dabrowski,et al. Specific heat anomalies in La 1 − x Sr x Mn O 3 ( 0.12 ⩽ x ⩽ 0.2 ) , 2005 .
[140] S. Allen,et al. The ferromagnetic shape-memory effect in Ni–Mn–Ga , 2005 .
[141] J. Vieira,et al. Magnetocaloric effect in Er- and Eu-substituted ferromagnetic La-Sr manganites , 2005 .
[142] A. Tishin,et al. Thermodynamic model of the magnetocaloric effect near the first-order magnetic phase transitions , 2005 .
[143] S. Atalay,et al. Magnetocaloric effect in the La0.62Bi0.05Ca0.33MnO3 compound , 2005 .
[144] N. Nakayama,et al. New method for the production of bulk amorphous materials of Nd-Fe-B alloys , 2005 .
[145] M. Phan,et al. Excellent magnetocaloric properties of La0.7Ca0.3−xSrxMnO3(0.05⩽x⩽0.25) single crystals , 2005 .
[146] Ziyu Wu,et al. O 2p hole-assisted electronic processes in the Pr1-xSrxMnO3 (x=0.0, 0.3) system , 2004 .
[147] S. Gama,et al. Pressure-induced colossal magnetocaloric effect in MnAs. , 2004, Physical review letters.
[148] V. Amaral,et al. Magnetoelastic coupling influence on the magnetocaloric effect in ferromagnetic materials , 2004 .
[149] M. Fardis,et al. Spin-polarized oxygen hole states in cation-deficient La1 − xCaxMnO3 + δ , 2003, cond-mat/0310101.
[150] Anibal T. de Almeida,et al. Market transformation of energy-efficient motor technologies in the EU , 2003 .
[151] S. Fujieda,et al. Itinerant-electron Metamagnetic Transition and Large Magnetocaloric Effects in La(FexSi1-x)13 Compounds and Their Hydrides , 2003 .
[152] K. Gschneidner,et al. Recent developments in magnetocaloric materials , 2003 .
[153] M. Koblischka,et al. Perovskite manganites: potential materials for magnetic cooling at or near room temperature , 2002 .
[154] N. P. Thuy. Preparation and magneto-caloric effect of La1−xAgxMnO3 (x=0.10–0.30) perovskite compounds , 2002 .
[155] J. Rivas,et al. Drop of magnetocaloric effect related to the change from first- to second-order magnetic phase transition in La2/3(Ca1−xSrx)1/3MnO3 , 2002 .
[156] C. Dubourdieu,et al. Neutron diffraction, NMR and magneto-transport properties in the Pr0.6Sr0.4MnO3 perovskite manganite , 2002 .
[157] H. Wada,et al. Giant magnetocaloric effect of MnAs1−xSbx , 2001 .
[158] F. Hu,et al. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 , 2001 .
[159] H. Wakai. The phase separation due to A-site-cation size mismatch in La0.5Ca0.5-xBaxMnO3 , 2001 .
[160] Chunhua Yan,et al. Soft chemical synthesis and transport properties of La0.7Sr0.3MnO3 granular perovskites , 2000 .
[161] M. T. Casais,et al. Evolution of the Jahn-Teller distortion of MnO6 octahedra in RMnO3 perovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): a neutron diffraction study. , 2000, Inorganic chemistry.
[162] M. Itoh,et al. ROLE OF SIZE MISMATCH OF A-SITE CATIONS ON THE FIRST-ORDER TRANSITION IN MANGANATES , 1999 .
[163] V. Pecharsky,et al. Recent Developments in Magnetic Refrigeration , 1999 .
[164] Vitalij K. Pecharsky,et al. MAGNETOCALORIC EFFECT AND HEAT CAPACITY IN THE PHASE-TRANSITION REGION , 1999 .
[165] X. Obradors,et al. HIGH-FIELD MAGNETORESISTANCE AT INTERFACES IN MANGANESE PEROVSKITES , 1998 .
[166] L. M. Rodriguez-Martinez,et al. Cation disorder and the metal-insulator transition temperature in manganese oxide perovskites , 1998 .
[167] X. Y. Liu,et al. Effect of sample preparation on the magnetic and magnetocaloric properties of amorphous Gd70Ni30 , 1998 .
[168] J. Rodríguez-Carvajal,et al. Neutron-diffraction study of the Jahn-Teller transition in stoichiometric LaMnO 3 , 1998 .
[169] F. Fauth,et al. ANTIPARALLEL ORDERING OF MN AND ND MAGNETIC MOMENTS IN ND0.7BA0.3MNO3 , 1997 .
[170] H. Sohn,et al. EVIDENCE FOR O2P HOLE-DRIVEN CONDUCTIVITY IN LA1-XSRXMNO3 (0 X 0.7) AND LA0.7SR0.3MNOZ THIN FILMS , 1997 .
[171] K. Gschneidner,et al. Phase relationships and crystallography in the pseudobinary system Gd5Si4Gd5Ge4 , 1997 .
[172] A. Maignan,et al. Effect of A -site cation size mismatch on charge ordering and colossal magnetoresistance properties of perovskite manganites , 1997 .
[173] P. Bénard,et al. Comparison of magnetocaloric properties from magnetic and thermal measurements , 1997 .
[174] K. Gschneidner,et al. Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .
[175] R. Chahine,et al. A sample translatory type insert for automated magnetocaloric effect measurements , 1997 .
[176] R. Chahine,et al. Composite materials for Ericsson-like magnetic refrigeration cycle , 1997 .
[177] M. Lees,et al. A New Monoclinic Perovskite Allotype in Pr0.6Sr0.4MnO3 , 1996 .
[178] C. Shek,et al. Preparation of nanocomposite working substances for room-temperature magnetic refrigeration , 1996 .
[179] C. Shek,et al. Magnetic entropy in nanocomposite binary gadolinium alloys , 1996 .
[180] Mart́ınez,et al. Colossal magnetoresistance of ferromagnetic manganites: Structural tuning and mechanisms. , 1996, Physical review letters.
[181] Shraiman,et al. Dynamic Jahn-Teller Effect and Colossal Magnetoresistance in La 1-xSrxMnO3. , 1995, Physical review letters.
[182] P. Norby,et al. The crystal structure of lanthanum manganate(iii), LaMnO3, at room temperature and at 1273 K under N2 , 1995 .
[183] Kido,et al. Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3. , 1995, Physical review. B, Condensed matter.
[184] Littlewood,et al. Double exchange alone does not explain the resistivity of La1-xSrxMnO3. , 1995, Physical review letters.
[185] K. Gschneidner,et al. (Dy0.5Er0.5)Al2: A large magnetocaloric effect material for low‐temperature magnetic refrigeration , 1994 .
[186] R. Shull. Magnetocaloric effect of ferromagnetic particles , 1993 .
[187] Y. Nie. A Note on ‘New Criteria for Polynomial Stability’ , 1991 .
[188] A. Tishin. Working substances for magnetic refrigerators , 1990 .
[189] A. Tishin. Magnetocaloric effect in strong magnetic fields , 1990 .
[190] M. E. Wood,et al. General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity , 1985 .
[191] G. Villeneuve,et al. Structural and magnetization study of Pr1−xCaxMnO3 , 1980 .
[192] S. Benford. The magnetocaloric effect in dysprosium , 1979 .
[193] G. V. Brown. Magnetic heat pumping near room temperature , 1976 .
[194] B. Banerjee. On a generalised approach to first and second order magnetic transitions , 1964 .
[195] M. Höhl. Magnetische Untersuchungen , 1960 .
[196] Clarence Zener,et al. Interaction Between the d Shells in the Transition Metals , 1951 .
[197] J. H. van Santen,et al. Ferromagnetic compounds of manganese with perovskite structure , 1950 .