Generation of high-fidelity random fields from micro CT images and phase field-based mesoscale fracture modelling of concrete

[1]  Xiaoqiao He,et al.  A peridynamics-based cohesive zone model (PD-CZM) for predicting cohesive crack propagation , 2020 .

[2]  Yixiang Gan,et al.  The role of particle morphology on concrete fracture behaviour: A meso-scale modelling approach , 2020 .

[3]  Jian-Ying Wu,et al.  Comprehensive implementations of phase-field damage models in Abaqus , 2020 .

[4]  Jan Eli'avs,et al.  Fracture in random quasibrittle media: I. Discrete mesoscale simulations of load capacity and fracture process zone , 2020, Engineering Fracture Mechanics.

[5]  W. Kalender,et al.  X-ray computed tomography , 2019, Machine Learning for Tomographic Imaging.

[6]  J. Tejchman,et al.  Experimental investigations of damage evolution in concrete during bending by continuous micro-CT scanning , 2019, Materials Characterization.

[7]  Xiu-li Du,et al.  Meso-scale modelling of the size effect on dynamic compressive failure of concrete under different strain rates , 2019, International Journal of Impact Engineering.

[8]  Jian-Ying Wu,et al.  X-ray computed tomography images based phase-field modeling of mesoscopic failure in concrete , 2019, Engineering Fracture Mechanics.

[9]  Vinh Phu Nguyen,et al.  Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model , 2018, Computer Methods in Applied Mechanics and Engineering.

[10]  Vinh Phu Nguyen,et al.  A length scale insensitive phase-field damage model for brittle fracture , 2018, Journal of the Mechanics and Physics of Solids.

[11]  B. Šavija,et al.  Towards understanding stochastic fracture performance of cement paste at micro length scale based on numerical simulation , 2018, Construction and Building Materials.

[12]  Eric N. Landis,et al.  Microplanes and microstructure: Connecting abstractions and reality , 2018, Engineering Fracture Mechanics.

[13]  De-Cheng Feng,et al.  Phase-field regularized cohesive zone model (CZM) and size effect of concrete , 2018 .

[14]  Wing Kam Liu,et al.  Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques , 2018, Progress in Materials Science.

[15]  M. Cervera,et al.  A novel positive/negative projection in energy norm for the damage modeling of quasi-brittle solids , 2018 .

[16]  C. H. Li,et al.  X-ray micro-tomography for investigation of meso-structural changes and crack evolution in Longmaxi formation shale during compressive deformation , 2018 .

[17]  J. Tejchman,et al.  A three-dimensional meso-scale modelling of concrete fracture, based on cohesive elements and X-ray μCT images , 2017 .

[18]  S. Wu,et al.  The imaging of failure in structural materials by synchrotron radiation X-ray microtomography , 2017 .

[19]  Jian-Ying Wu,et al.  A unified phase-field theory for the mechanics of damage and quasi-brittle failure , 2017 .

[20]  K. Matous,et al.  Sharp volumetric billboard based characterization and modeling of complex 3D Ni/Al high energy ball milled composites , 2017 .

[21]  Yang Ju,et al.  Multi-thread parallel algorithm for reconstructing 3D large-scale porous structures , 2017, Comput. Geosci..

[22]  X. Chen,et al.  Monte Carlo simulations of meso-scale dynamic compressive behavior of concrete based on X-ray computed tomography images , 2016 .

[23]  Jan Havelka,et al.  Compression and reconstruction of random microstructures using accelerated lineal path function , 2016, 1601.04359.

[24]  D. Owen,et al.  Statistical reconstruction and Karhunen–Loève expansion for multiphase random media , 2016 .

[25]  Patrick E. Farrell,et al.  Linear and nonlinear solvers for variational phase‐field models of brittle fracture , 2015, 1511.08463.

[26]  Chuanzeng Zhang,et al.  3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray Computed Tomography images using damage plasticity model , 2015 .

[27]  Zdeněk P. Bažant,et al.  Stochastic discrete meso-scale simulations of concrete fracture: Comparison to experimental data , 2015 .

[28]  Andrey P. Jivkov,et al.  Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores , 2015 .

[29]  D. Owen,et al.  Statistical reconstruction of two-phase random media , 2014 .

[30]  J. E. Bolander,et al.  An In-Situ X-Ray Microtomography Study of Split Cylinder Fracture in Cement-Based Materials , 2014 .

[31]  G. Ma,et al.  Numerical simulation of dynamic tensile-failure of concrete at meso-scale , 2014 .

[32]  Salvatore Torquato,et al.  Accurate modeling and reconstruction of three-dimensional percolating filamentary microstructures from two-dimensional micrographs via dilation-erosion method , 2014 .

[33]  P. Withers,et al.  Quantitative X-ray tomography , 2014 .

[34]  Jie Li,et al.  A random medium model for simulation of concrete failure , 2013 .

[35]  Brian N. Cox,et al.  Generating virtual textile composite specimens using statistical data from micro-computed tomography: 3D tow representations , 2012 .

[36]  J.G.M. van Mier,et al.  Damage distribution and size effect in numerical concrete from lattice analyses , 2011 .

[37]  Peter Grassl,et al.  Meso-scale modelling of the size effect on the fracture process zone of concrete , 2011, 1107.2311.

[38]  Sun-Myung Kim,et al.  Meso-scale computational modeling of the plastic-damage response of cementitious composites , 2011 .

[39]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[40]  M. Grigoriu Existence and construction of translation models for stationary non-Gaussian processes , 2009 .

[41]  Xiangting Su,et al.  Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials , 2009 .

[42]  Jean-Jacques Marigo,et al.  Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments , 2009 .

[43]  Lori Graham-Brady,et al.  Stochastic Morphological Modeling of Random Multiphase Materials , 2008 .

[44]  Zhenjun Yang,et al.  A heterogeneous cohesive model for quasi-brittle materials considering spatially varying random fracture properties , 2008 .

[45]  S. Eckardt,et al.  Modelling of cohesive crack growth in concrete structures with the extended finite element method , 2007 .

[46]  Miroslav Vořechovský,et al.  Interplay of size effects in concrete specimens under tension studied via computational stochastic fracture mechanics , 2007 .

[47]  Thomas Most,et al.  Probabilistic analysis of concrete cracking using neural networks and random fields , 2007 .

[48]  Phadeon-Stelios Koutsourelakis,et al.  Probabilistic characterization and simulation of multi-phase random media , 2006 .

[49]  Defeng Sun,et al.  A Quadratically Convergent Newton Method for Computing the Nearest Correlation Matrix , 2006, SIAM J. Matrix Anal. Appl..

[50]  P. Wriggers,et al.  Mesoscale models for concrete: homogenisation and damage behaviour , 2006 .

[51]  D. Corr,et al.  Mechanical analysis with moving-window generalized method of cells , 2003 .

[52]  S. Baxter,et al.  Micromechanics based random material property fields for particulate reinforced composites , 2001 .

[53]  Sarah C. Baxter,et al.  Simulation of local material properties based on moving-window GMC , 2001 .

[54]  Günter Hofstetter,et al.  Experimental verification of a constitutive model for concrete cracking , 2001 .

[55]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[56]  Salvatore Torquato,et al.  Generating random media from limited microstructural information via stochastic optimization , 1999 .

[57]  Andrea Braides Approximation of Free-Discontinuity Problems , 1998 .

[58]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[59]  T. Marrow,et al.  In-situ X-ray computed tomography characterisation of 3D fracture evolution and image-based numerical homogenisation of concrete , 2017 .

[60]  Ch. Zhang,et al.  Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete , 2015 .

[61]  Wei Chen,et al.  Computational microstructure characterization and reconstruction for stochastic multiscale material design , 2013, Comput. Aided Des..

[62]  M. Khaleel,et al.  Three-dimensional reconstruction and homogenization of heterogeneous materials using statistical correlation functions and FEM , 2012 .

[63]  Nicholas J. Higham,et al.  A Preconditioned Newton Algorithm for the Nearest Correlation Matrix , 2010 .

[64]  David R. Owen,et al.  A Fourier–Karhunen–Loève discretization scheme for stationary random material properties in SFEM , 2008 .

[65]  Matteo Bruggi,et al.  Cohesive Crack Propagation in a Random Elastic Medium , 2008 .

[66]  G. Schuëller,et al.  The need for linking micromechanics of materials with stochastic finite elements : a challenge for materials science , 2006 .

[67]  Y. Feng,et al.  Fourier representation of random media fields in stochastic finite element modelling , 2006 .

[68]  S. Torquato,et al.  Reconstructing random media , 1998 .

[69]  D. Hordijk TENSILE AND TENSILE FATIGUE BEHAVIOUR OF CONCRETE; EXPERIMENTS, MODELLING AND ANALYSES , 1992 .

[70]  H. W. Reinhardt,et al.  Experimental determination of crack softening characteristics of normalweight and lightweight concrete , 1986 .