Can Inhibitor-Resistant Substitutions in the Mycobacterium tuberculosis β-Lactamase BlaC Lead to Clavulanate Resistance?: a Biochemical Rationale for the Use of β-Lactam–β-Lactamase Inhibitor Combinations

ABSTRACT The current emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis calls for novel treatment strategies. Recently, BlaC, the principal β-lactamase of Mycobacterium tuberculosis, was recognized as a potential therapeutic target. The combination of meropenem and clavulanic acid, which inhibits BlaC, was found to be effective against even extensively drug-resistant M. tuberculosis strains when tested in vitro. Yet there is significant concern that drug resistance against this combination will also emerge. To investigate the potential of BlaC to evolve variants resistant to clavulanic acid, we introduced substitutions at important amino acid residues of M. tuberculosis BlaC (R220, A244, S130, and T237). Whereas the substitutions clearly led to in vitro clavulanic acid resistance in enzymatic assays but at the expense of catalytic activity, transformation of variant BlaCs into an M. tuberculosis H37Rv background revealed that impaired inhibition of BlaC did not affect inhibition of growth in the presence of ampicillin and clavulanate. From these data we propose that resistance to β-lactam–β-lactamase inhibitor combinations will likely not arise from structural alteration of BlaC, therefore establishing confidence that this therapeutic modality can be part of a successful treatment regimen against M. tuberculosis.

[1]  J. Blanchard,et al.  Irreversible inhibition of the Mycobacterium tuberculosis beta-lactamase by clavulanate. , 2007, Biochemistry.

[2]  V. Jarlier,et al.  Site-directed mutagenesis of residues 164, 170, 171, 179, 220, 237 and 242 in PER-1 beta-lactamase hydrolysing expanded-spectrum cephalosporins. , 1999, Protein engineering.

[3]  Feng Wang,et al.  Crystal Structure and Activity Studies of the Mycobacterium tuberculosis β-Lactamase Reveal Its Critical Role in Resistance to β-Lactam Antibiotics , 2006, Antimicrobial Agents and Chemotherapy.

[4]  R. Bonomo,et al.  Probing active site chemistry in SHV beta-lactamase variants at Ambler position 244. Understanding unique properties of inhibitor resistance. , 2006, The Journal of biological chemistry.

[5]  M. Ishiguro,et al.  Cloning and sequence of the gene encoding a cefotaxime-hydrolyzing class A beta-lactamase isolated from Escherichia coli , 1995, Antimicrobial agents and chemotherapy.

[6]  H. Nikaido,et al.  Can penicillins and other beta-lactam antibiotics be used to treat tuberculosis? , 1995, Antimicrobial agents and chemotherapy.

[7]  J M Masson,et al.  Crystal structure of Escherichia coli TEM1 β‐lactamase at 1.8 Å resolution , 1993, Proteins.

[8]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998 .

[9]  M. Gazouli,et al.  Emergence of an inhibitor-resistant beta-lactamase (SHV-10) derived from an SHV-5 variant , 1997, Antimicrobial agents and chemotherapy.

[10]  F. Baquero,et al.  A237T as a Modulating Mutation in Naturally Occurring Extended-Spectrum TEM-Type β-Lactamases , 1998, Antimicrobial Agents and Chemotherapy.

[11]  Randy J. Read,et al.  Phenix - a comprehensive python-based system for macromolecular structure solution , 2012 .

[12]  Feng Wang,et al.  Crystal structure and activity studies of the Mycobacterium tuberculosis beta-lactamase reveal its critical role in resistance to beta-lactam antibiotics. , 2006, Antimicrobial agents and chemotherapy.

[13]  B. Atanasov,et al.  Protonation of the beta-lactam nitrogen is the trigger event in the catalytic action of class A beta-lactamases. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  T. Palzkill,et al.  Amino Acid Residues That Contribute to Substrate Specificity of Class A β-Lactamase SME-1 , 2005, Antimicrobial Agents and Chemotherapy.

[15]  A. W. Schüttelkopf,et al.  PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. , 2004, Acta crystallographica. Section D, Biological crystallography.

[16]  S. Cole,et al.  Genome‐wide regulon and crystal structure of BlaI (Rv1846c) from Mycobacterium tuberculosis , 2009, Molecular microbiology.

[17]  R. Bonomo,et al.  Understanding Resistance to β-Lactams and β-Lactamase Inhibitors in the SHV β-Lactamase , 2003, Journal of Biological Chemistry.

[18]  J. Blanchard,et al.  Structure of the covalent adduct formed between Mycobacterium tuberculosis beta-lactamase and clavulanate. , 2008, Biochemistry.

[19]  M. Gazouli,et al.  Sequence of the Gene Encoding a Plasmid-Mediated Cefotaxime-Hydrolyzing Class A β-Lactamase (CTX-M-4): Involvement of Serine 237 in Cephalosporin Hydrolysis , 1998, Antimicrobial Agents and Chemotherapy.

[20]  C. Hackbarth,et al.  Cloning and sequence analysis of a class A beta-lactamase from Mycobacterium tuberculosis H37Ra , 1997, Antimicrobial agents and chemotherapy.

[21]  W. Jacobs,et al.  New use of BCG for recombinant vaccines , 1991, Nature.

[22]  W. Jacobs,et al.  Genetic methods for deciphering virulence determinants of Mycobacterium tuberculosis. , 2002, Methods in enzymology.

[23]  N. G. Brown,et al.  Analysis of the plasticity of location of the Arg244 positive charge within the active site of the TEM‐1 β‐lactamase , 2009, Protein science : a publication of the Protein Society.

[24]  V. Miriagou,et al.  Substitution of Thr for Ala-237 in TEM-17, TEM-12 and TEM-26: alterations in beta-lactam resistance conferred on Escherichia coli. , 2001, FEMS microbiology letters.

[25]  K. Edwards,et al.  Recombinant Expression and Characterization of the Major β-Lactamase of Mycobacterium tuberculosis , 1998, Antimicrobial Agents and Chemotherapy.

[26]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[27]  S. Mobashery,et al.  Mechanistic Basis for the Emergence of Catalytic Competence against Carbapenem Antibiotics by the GES Family of β-Lactamases , 2009, The Journal of Biological Chemistry.

[28]  J M Ghuysen,et al.  A standard numbering scheme for the class A beta-lactamases. , 1991, The Biochemical journal.

[29]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[30]  F. Mouchet,et al.  Meropenem/clavulanate and linezolid treatment for extensively drug-resistant tuberculosis. , 2011, The Pediatric infectious disease journal.

[31]  R. Bonomo,et al.  Three Decades of β-Lactamase Inhibitors , 2010, Clinical Microbiology Reviews.

[32]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[33]  Clinical,et al.  Performance Standards for Antimicrobial Susceptibility Testing; Eighteenth Informational Supplement , 2008 .

[34]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998, J. Comput. Chem..

[35]  J. Frère,et al.  Mechanism of acyl transfer by the class A serine beta-lactamase of Streptomyces albus G. , 1991, The Biochemical journal.

[36]  R. Bonomo,et al.  Understanding resistance to beta-lactams and beta-lactamase inhibitors in the SHV beta-lactamase: lessons from the mutagenesis of SER-130. , 2003, Journal of Biological Chemistry.

[37]  P. Hopewell,et al.  Activity of amoxicillin/clavulanate in patients with tuberculosis. , 1998, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[38]  J M Masson,et al.  Electrostatic analysis of TEM1 beta-lactamase: effect of substrate binding, steep potential gradients and consequences of site-directed mutations. , 1995, Structure.

[39]  S. Mobashery,et al.  Elucidation of the role of arginine-244 in the turnover processes of class A beta-lactamases. , 1992, Biochemistry.

[40]  R. Bonomo,et al.  Inhibition of class A beta-lactamases by carbapenems: crystallographic observation of two conformations of meropenem in SHV-1. , 2008, Journal of the American Chemical Society.

[41]  P. Carey,et al.  Different intermediate populations formed by tazobactam, sulbactam, and clavulanate reacting with SHV-1 beta-lactamases: Raman crystallographic evidence. , 2009, Journal of the American Chemical Society.

[42]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[43]  M. Pavelka,et al.  Genetic analysis of the beta-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to beta-lactam antibiotics. , 2005, Microbiology.

[44]  F. Jacob-Dubuisson,et al.  Arginine 220 is a critical residue for the catalytic mechanism of the Streptomyces albus G beta-lactamase. , 1991, Protein engineering.

[45]  J. Blanchard,et al.  Meropenem-Clavulanate Is Effective Against Extensively Drug-Resistant Mycobacterium tuberculosis , 2009, Science.

[46]  C. Betzel,et al.  Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Å resolution , 1992, Nature.

[47]  J. Blanchard,et al.  Biochemical and structural characterization of Mycobacterium tuberculosis beta-lactamase with the carbapenems ertapenem and doripenem. , 2010, Biochemistry.

[48]  G N Murshudov,et al.  Incorporation of prior phase information strengthens maximum-likelihood structure refinement. , 1998, Acta crystallographica. Section D, Biological crystallography.

[49]  J. Knowles,et al.  Penicillanic acid sulfone: an unexpected isotope effect in the interaction of 6 alpha- and 6 beta-monodeuterio and of 6,6-dideuterio derivatives with RTEM beta-lactamase from Escherichia coli. , 1981, Biochemistry.

[50]  M. Pavelka,et al.  Genetic analysis of the β-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to β-lactam antibiotics , 2005 .

[51]  Brian K Shoichet,et al.  Structural consequences of the inhibitor-resistant Ser130Gly substitution in TEM beta-lactamase. , 2005, Biochemistry.

[52]  C. Quentin,et al.  Molecular Characterization of TEM-59 (IRT-17), a Novel Inhibitor-Resistant TEM-Derived β-Lactamase in a Clinical Isolate of Klebsiella oxytoca , 1999, Antimicrobial Agents and Chemotherapy.

[53]  Peter Briggs,et al.  A graphical user interface to the CCP4 program suite. , 2003, Acta crystallographica. Section D, Biological crystallography.

[54]  Global Tuberculosis Programme Global tuberculosis control : WHO report , 1997 .

[55]  Robert A. Bonomo,et al.  Understanding the Molecular Determinants of Substrate and Inhibitor Specificities in the Carbapenemase KPC-2: Exploring the Roles of Arg220 and Glu276 , 2012, Antimicrobial Agents and Chemotherapy.

[56]  P. Nordmann,et al.  Role of ser-237 in the substrate specificity of the carbapenem-hydrolyzing class A beta-lactamase Sme-1. , 1999, Biochimica et biophysica acta.

[57]  R. Wallace,,et al.  Susceptibility testing of slowly growing mycobacteria by a microdilution MIC method with 7H9 broth , 1986, Journal of clinical microbiology.

[58]  Eric M. Billings,et al.  Inactivation of class A β-lactamases by clavulanic acid : the role of arginine-244 in a proposed nonconcerted sequence of events , 1993 .

[59]  R. Bonomo,et al.  Inhibition of the SHV-1 beta-lactamase by sulfones: crystallographic observation of two reaction intermediates with tazobactam. , 2001, Biochemistry.

[60]  T. Sawai,et al.  Replacement of serine 237 in class A beta-lactamase of Proteus vulgaris modifies its unique substrate specificity. , 1994, Biochemistry.

[61]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[62]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[63]  J. Frère,et al.  Catalytic properties of class A beta-lactamases: efficiency and diversity. , 1998, The Biochemical journal.

[64]  Neel R Gandhi,et al.  Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa , 2006, The Lancet.

[65]  R. Bonomo,et al.  Crystal structure of KPC-2: insights into carbapenemase activity in class A beta-lactamases. , 2007, Biochemistry.

[66]  R. Bonomo,et al.  Substrate Selectivity and a Novel Role in Inhibitor Discrimination by Residue 237 in the KPC-2 β-Lactamase , 2010, Antimicrobial Agents and Chemotherapy.

[67]  Roman A. Laskowski,et al.  PDBsum new things , 2008, Nucleic Acids Res..

[68]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[69]  Zhenjiang Li,et al.  Personal Experience with Four Kinds of Chemical Structure Drawing Software: Review on ChemDraw, ChemWindow, ISIS/Draw, and ChemSketch , 2004, J. Chem. Inf. Model..

[70]  R. Bonomo,et al.  Amino Acid Substitutions at Ambler Position Gly238 in the SHV-1 β-Lactamase: Exploring Sequence Requirements for Resistance to Penicillins and Cephalosporins , 2002, Antimicrobial Agents and Chemotherapy.

[71]  R. Bonomo,et al.  Structure of the SHV-1 beta-lactamase. , 1999, Biochemistry.

[72]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[73]  J. Blanchard,et al.  Structures of the Michaelis complex (1.2 Å) and the covalent acyl intermediate (2.0 Å) of cefamandole bound in the active sites of the Mycobacterium tuberculosis β-lactamase K73A and E166A mutants. , 2010, Biochemistry.