Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells

[1]  Hiroshi Nishimasu Crystal Structure of Cas9 , 2015 .

[2]  Jennifer A. Doudna,et al.  Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation , 2014, Science.

[3]  Jennifer A. Doudna,et al.  DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 , 2014, Nature.

[4]  Wei Zhang,et al.  Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System , 2014, Cell.

[5]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[6]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[7]  Jin-Soo Kim,et al.  Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases , 2014, Genome research.

[8]  Hans Clevers,et al.  Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. , 2013, Cell stem cell.

[9]  Wei Tang,et al.  Correction of a genetic disease in mouse via use of CRISPR-Cas9. , 2013, Cell stem cell.

[10]  G. Gasiunas,et al.  RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? , 2013, Trends in microbiology.

[11]  P. Sternberg,et al.  Transgene-Free Genome Editing in Caenorhabditis elegans Using CRISPR-Cas , 2013, Genetics.

[12]  Alexander van Oudenaarden,et al.  Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins , 2013, Proceedings of the National Academy of Sciences.

[13]  G. Church,et al.  Cas9 as a versatile tool for engineering biology , 2013, Nature Methods.

[14]  D. Carroll Staying on target with CRISPR-Cas , 2013, Nature Biotechnology.

[15]  Bob Goldstein,et al.  Engineering the Caenorhabditis elegans Genome Using Cas9-Triggered Homologous Recombination , 2013, Nature Methods.

[16]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[17]  Yarden Katz,et al.  Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system , 2013, Cell Research.

[18]  David R. Liu,et al.  High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity , 2013, Nature Biotechnology.

[19]  Gang Bao,et al.  CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity , 2013, Nucleic acids research.

[20]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[21]  Christopher M. Vockley,et al.  RNA-guided gene activation by CRISPR-Cas9-based transcription factors , 2013, Nature Methods.

[22]  Morgan L. Maeder,et al.  CRISPR RNA-guided activation of endogenous human genes , 2013, Nature Methods.

[23]  Luke A. Gilbert,et al.  CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes , 2013, Cell.

[24]  Yulia Yuzenkova,et al.  Mechanism of Eukaryotic RNA Polymerase III Transcription Termination , 2013, Science.

[25]  J. Keith Joung,et al.  High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.

[26]  Feng Zhang,et al.  CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.

[27]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[28]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[29]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[30]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[31]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[32]  Philip Cayting,et al.  An encyclopedia of mouse DNA elements (Mouse ENCODE) , 2012, Genome Biology.

[33]  Vijay K. Tiwari,et al.  DNA-binding factors shape the mouse methylome at distal regulatory regions , 2011, Nature.

[34]  R. Terns,et al.  CRISPR-based adaptive immune systems. , 2011, Current opinion in microbiology.

[35]  Philip Machanick,et al.  MEME-ChIP: motif analysis of large DNA datasets , 2011, Bioinform..

[36]  V. Praz,et al.  Widespread occurrence of non-canonical transcription termination by human RNA polymerase III , 2011, Nucleic acids research.

[37]  H. Deveau,et al.  CRISPR/Cas system and its role in phage-bacteria interactions. , 2010, Annual review of microbiology.

[38]  L. Marraffini,et al.  CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea , 2010, Nature Reviews Genetics.

[39]  R. Barrangou,et al.  CRISPR/Cas, the Immune System of Bacteria and Archaea , 2010, Science.

[40]  Stan J. J. Brouns,et al.  CRISPR-based adaptive and heritable immunity in prokaryotes. , 2009, Trends in biochemical sciences.

[41]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[42]  J. García-Martínez,et al.  Short motif sequences determine the targets of the prokaryotic CRISPR defence system. , 2009, Microbiology.

[43]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[44]  J. Doudna,et al.  A three-dimensional view of the molecular machinery of RNA interference , 2009, Nature.

[45]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[46]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[47]  C. Hunter,et al.  Sequence-dependent DNA structure: tetranucleotide conformational maps. , 2000, Journal of molecular biology.

[48]  Ann Allergy,et al.  O R I G I N a L a R T I C L E S , 2022 .