Arithmetic Units for RNS Moduli {2n-3} and {2n+3} Operations
暂无分享,去创建一个
[1] Ming-Hwa Sheu,et al. An efficient VLSI design for a residue to binary converter for general balance moduli (2n-3, 2n+1, 2n-1, 2n+3) , 2004, IEEE Trans. Circuits Syst. II Express Briefs.
[2] A. Omondi,et al. Residue Number Systems: Theory and Implementation , 2007 .
[3] L. Sousa,et al. A universal architecture for designing efficient modulo 2/sup n/+1 multipliers , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.
[4] Ricardo Chaves,et al. {2/sup n/ + 1, 2/sup n+k/, 2/sup n/ - 1} : a new RNS moduli set extension , 2004, Euromicro Symposium on Digital System Design, 2004. DSD 2004..
[5] Ricardo Chaves,et al. {2 n +1, s n+k , s n -1}: A New RNS Moduli Set Extension. , 2004 .
[6] P. V. Anandu Mohan. REVERSE CONVERTERS FOR THE MODULI SETS (22N-1, ZN, 2zN+1) AND {2"-3, 2N+1, 2N-1, ZN+3) , 2004 .
[7] Keivan Navi,et al. A new high dynamic range moduli set with efficient reverse converter , 2008, Comput. Math. Appl..
[8] R. A. Patel,et al. Efficient new approach for modulo 2/sup n/-1 addition in RNS , 2006 .
[9] Michael A. Soderstrand,et al. Residue number system arithmetic: modern applications in digital signal processing , 1986 .
[10] Said Boussakta,et al. Power-delay-area efficient modulo 2n + 1 adder architecture for RNS , 2005 .
[11] Reto Zimmermann,et al. Efficient VLSI implementation of modulo (2/sup n//spl plusmn/1) addition and multiplication , 1999, Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336).
[12] Laurent-Stéphane Didier,et al. A Generalization of a Fast RNS Conversion for a New 4-Modulus Base , 2009 .
[13] Leonel Sousa,et al. An RNS based Specific Processor for Computing the Minimum Sum-of-Absolute-Differences , 2008, 2008 11th EUROMICRO Conference on Digital System Design Architectures, Methods and Tools.
[14] Haridimos T. Vergos,et al. Design of efficient modulo 2n+1 multipliers , 2007, IET Comput. Digit. Tech..